Display options
Share it on

Front Neurosci. 2013 Dec 10;7:237. doi: 10.3389/fnins.2013.00237. eCollection 2013.

ICA model order selection of task co-activation networks.

Frontiers in neuroscience

Kimberly L Ray, D Reese McKay, Peter M Fox, Michael C Riedel, Angela M Uecker, Christian F Beckmann, Stephen M Smith, Peter T Fox, Angela R Laird

Affiliations

  1. Research Imaging Institute, University of Texas Health Science Center, San Antonio TX, USA.

PMID: 24339802 PMCID: PMC3857551 DOI: 10.3389/fnins.2013.00237

Abstract

Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders.

Keywords: BrainMap; co-activations; functional brain networks; functional connectivity; independent component analysis; intrinsic connectivity networks; meta-analysis; resting state networks

References

  1. Neuroimage. 2008 Feb 15;39(4):1666-81 - PubMed
  2. Neuroimage. 2012 Nov 15;63(3):1364-73 - PubMed
  3. IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 - PubMed
  4. Hum Brain Mapp. 2008 Jul;29(7):828-38 - PubMed
  5. Hum Brain Mapp. 1998;6(5-6):368-72 - PubMed
  6. J Cogn Neurosci. 2011 Dec;23(12):4022-37 - PubMed
  7. Front Neuroinform. 2009 Jul 09;3:23 - PubMed
  8. Neuroimage. 2004 Jul;22(3):1214-22 - PubMed
  9. Neuroimage. 2002 Oct;17(2):922-7 - PubMed
  10. Cereb Cortex. 2008 Nov;18(11):2553-9 - PubMed
  11. Hum Brain Mapp. 2013 Dec;34(12):3247-66 - PubMed
  12. Hum Brain Mapp. 2007 Nov;28(11):1251-66 - PubMed
  13. PLoS One. 2012;7(11):e49340 - PubMed
  14. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9 - PubMed
  15. Hum Brain Mapp. 2010 Feb;31(2):173-84 - PubMed
  16. Neurosci Lett. 2009 Jul 24;458(3):97-101 - PubMed
  17. Front Syst Neurosci. 2011 Feb 04;5:2 - PubMed
  18. Neuroinformatics. 2005;3(1):65-78 - PubMed
  19. IEEE Rev Biomed Eng. 2012;5:60-73 - PubMed
  20. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18760-5 - PubMed
  21. Hum Brain Mapp. 2010 Aug;31(8):1207-16 - PubMed
  22. Hum Brain Mapp. 2009 Feb;30(2):417-31 - PubMed
  23. Neuroimage. 2013 Apr 1;69:101-11 - PubMed
  24. Neuroimage. 2012 Aug 15;62(2):891-901 - PubMed
  25. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 - PubMed
  26. Neural Netw. 2000 May-Jun;13(4-5):411-30 - PubMed
  27. PLoS One. 2011;6(10):e26596 - PubMed
  28. Neuroimage. 2012 Aug 15;62(2):782-90 - PubMed
  29. Radiology. 2012 Dec;265(3):882-92 - PubMed
  30. Magn Reson Med. 1995 Oct;34(4):537-41 - PubMed
  31. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 - PubMed
  32. Biol Psychiatry. 2007 Sep 1;62(5):429-37 - PubMed
  33. Nat Rev Neurosci. 2002 Apr;3(4):319-21 - PubMed
  34. Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 - PubMed
  35. Neuroinformatics. 2012 Jan;10(1):57-66 - PubMed
  36. Neuroimage. 2004;23 Suppl 1:S208-19 - PubMed
  37. Hum Brain Mapp. 2009 Dec;30(12):3865-86 - PubMed
  38. Alzheimer Dis Assoc Disord. 2007 Oct-Dec;21(4):S50-7 - PubMed
  39. Cereb Cortex. 2014 Jan;24(1):232-48 - PubMed
  40. Neuroimage. 2010 Mar;50(1):48-55 - PubMed
  41. Exp Neurol. 2009 May;217(1):147-53 - PubMed
  42. BMC Res Notes. 2011 Sep 09;4:349 - PubMed
  43. Hum Brain Mapp. 2009 Sep;30(9):2907-26 - PubMed
  44. Nat Neurosci. 2009 May;12(5):535-40 - PubMed
  45. Front Syst Neurosci. 2011 Jun 03;5:37 - PubMed
  46. PLoS One. 2009;4(4):e5226 - PubMed
  47. J Neurosci. 2010 May 5;30(18):6409-21 - PubMed
  48. J Comput Assist Tomogr. 1999 Mar-Apr;23(2):265-71 - PubMed
  49. Brain Connect. 2012;2(4):218-24 - PubMed
  50. Neuroimage. 2009 Mar;45(1 Suppl):S173-86 - PubMed
  51. Front Neuroinform. 2009 Oct 30;3:37 - PubMed
  52. Nat Rev Neurosci. 2007 Sep;8(9):700-11 - PubMed
  53. Exp Neurol. 2008 Sep;213(1):137-44 - PubMed
  54. Front Neuroinform. 2012 Aug 28;6:23 - PubMed
  55. PLoS One. 2012;7(6):e39731 - PubMed
  56. PLoS Comput Biol. 2012;8(10):e1002707 - PubMed
  57. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 - PubMed
  58. Neuroimage. 2011 Aug 1;57(3):938-49 - PubMed
  59. Hum Brain Mapp. 2005 May;25(1):185-98 - PubMed
  60. Trends Cogn Sci. 2012 May;16(5):255-6 - PubMed
  61. Cereb Cortex. 2014 Mar;24(3):663-76 - PubMed
  62. Cereb Cortex. 2013 Nov;23(11):2677-89 - PubMed
  63. Nat Methods. 2011 Jun 26;8(8):665-70 - PubMed

Publication Types

Grant support