Display options
Share it on

Front Pharmacol. 2013 Dec 02;4:150. doi: 10.3389/fphar.2013.00150. eCollection 2013.

Characteristic interactivity of landiolol, an ultra-short-acting highly selective β1-blocker, with biomimetic membranes: Comparisons with β1-selective esmolol and non-selective propranolol and alprenolol.

Frontiers in pharmacology

Hironori Tsuchiya, Maki Mizogami

Affiliations

  1. Department of Dental Basic Education, Asahi University School of Dentistry Mizuho, Gifu, Japan.

PMID: 24339816 PMCID: PMC3857573 DOI: 10.3389/fphar.2013.00150

Abstract

Although β1-blockers have been perioperatively used to reduce the cardiac disorders associated with general anesthesia, little is known about the mechanistic characteristics of ultra-short-acting highly selective β1-blocker landiolol. We studied its membrane-interacting property in comparison with other selective and non-selective β1-blockers. Biomimetic membranes prepared with phospholipids and cholesterol of varying compositions were treated with β1-selective landiolol and esmolol and non-selective propranolol and alprenolol at 0.5-200 μM. The membrane interactivity and the antioxidant activity were determined by measuring fluorescence polarization and by peroxidizing membrane lipids with peroxynitrite, respectively. Non-selective β1-blockers, but not selective ones, intensively acted on 1,2-dipalmitoylphosphatidylcholine (DPPC) liposomal membranes and cardiomyocyte-mimetic membranes to increase the membrane fluidity. Landiolol and its inactive metabolite distinctively decreased the fluidity of DPPC liposomal membranes, suggesting that a membrane-rigidifying effect is attributed to the morpholine moiety in landiolol structure but unlikely to clinically contribute to the β1-blocking effect of landiolol. Propranolol and alprenolol interacted with lipid raft model membranes, whereas neither landiolol nor esmolol. All drugs fluidized mitochondria-mimetic membranes and inhibited the membrane lipid peroxidation with the potency correlating to their membrane interactivity. Landiolol is characterized as a drug devoid of the interactivity with membrane lipid rafts relating to β2-adrenergic receptor blockade. The differentiation between β1-blocking selectivity and non-selectivity is compatible with that between membrane non-interactivity and interactivity. The mitochondrial membrane fluidization by landiolol independent of blocking β1-adrenergic receptors is responsible for the antioxidant cardioprotection common to non-selective and selective β1-blockers.

Keywords: antioxidant activity; biomimetic membrane; landiolol; membrane interactivity; selective β1-blocker

References

  1. J Biol Chem. 2002 Sep 13;277(37):34280-6 - PubMed
  2. Br J Anaesth. 1988 Sep;61(3):345-6 - PubMed
  3. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12130-4 - PubMed
  4. J Cardiothorac Vasc Anesth. 2009 Oct;23(5):625-32 - PubMed
  5. J Anesth. 2007;21(4):480-9 - PubMed
  6. Front Pharmacol. 2010 Dec 31;1:144 - PubMed
  7. Anesth Analg. 2007 Jan;104(1):27-41 - PubMed
  8. BMJ. 2005 Aug 6;331(7512):313-21 - PubMed
  9. Nat Chem Biol. 2005 Sep;1(4):196-202 - PubMed
  10. Chem Pharm Bull (Tokyo). 1992 Jun;40(6):1462-9 - PubMed
  11. Heart Fail Rev. 2002 Oct;7(4):359-69 - PubMed
  12. Circ Res. 2004 Jan 9;94(1):53-9 - PubMed
  13. Clin Exp Pharmacol Physiol. 2001 Apr;28(4):292-9 - PubMed
  14. J Thorac Cardiovasc Surg. 1983 Feb;85(2):214-8 - PubMed
  15. Eur J Anaesthesiol. 2010 Sep;27(9):829-34 - PubMed
  16. Local Reg Anesth. 2008;1:1-9 - PubMed
  17. Eur J Pharm Sci. 2010 Jan 31;39(1-3):97-102 - PubMed
  18. Exp Biol Med (Maywood). 2006 Apr;231(4):473-84 - PubMed
  19. Life Sci. 2001 Feb 9;68(12):1351-66 - PubMed
  20. Can J Anaesth. 2005 Dec;52(10):1027-34 - PubMed
  21. Circulation. 2009 Nov 24;120(21):e169-276 - PubMed
  22. Can J Anaesth. 2003 May;50(5):489-94 - PubMed
  23. Biochim Biophys Acta. 2011 Sep;1808(9):2095-101 - PubMed
  24. Drug Metab Pharmacokinet. 2005 Oct;20(5):337-44 - PubMed
  25. J Pharmacol Toxicol Methods. 2011 Mar-Apr;63(2):209-15 - PubMed
  26. Cell Mol Life Sci. 2008 Aug;65(16):2493-506 - PubMed
  27. Chem Biol Interact. 2010 Jan 5;183(1):19-24 - PubMed
  28. Can J Anaesth. 2001 Jan;48(1):59-64 - PubMed
  29. Pharmazie. 1999 May;54(5):380-4 - PubMed
  30. J Hepatol. 1997 Apr;26(4):904-12 - PubMed
  31. Eur J Anaesthesiol. 2009 Jan;26(1):39-42 - PubMed
  32. Clin Pharmacol Ther. 1983 Oct;34(4):427-34 - PubMed
  33. Eur J Pharm Biopharm. 2013 May;84(1):183-91 - PubMed
  34. Anesthesiology. 1987 Mar;66(3):323-6 - PubMed
  35. Biophys Chem. 2006 Feb 1;119(3):307-15 - PubMed
  36. Anal Chim Acta. 2007 Jul 30;597(1):163-70 - PubMed
  37. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9 - PubMed
  38. J Lipid Res. 1965 Oct;6(4):481-9 - PubMed
  39. Mol Pharmacol. 2005 Oct;68(4):1156-61 - PubMed
  40. Bioorg Med Chem. 2011 Jun 1;19(11):3410-5 - PubMed
  41. Eur J Pharm Sci. 2009 Dec 8;38(5):533-47 - PubMed

Publication Types