Display options
Share it on

Nano Today. 2013 Apr;8(2). doi: 10.1016/j.nantod.2013.02.004.

High-resolution, serial intravital microscopic imaging of nanoparticle delivery and targeting in a small animal tumor model.

Nano today

Bryan Ronain Smith, Cristina Zavaleta, Jarrett Rosenberg, Ricky Tong, John Ramunas, Zhuang Liu, Hongjie Dai, Sanjiv Sam Gambhir

Affiliations

  1. 318 Campus Drive East, E-150, Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.

PMID: 24273594 PMCID: PMC3836612 DOI: 10.1016/j.nantod.2013.02.004

Abstract

Nanoparticles are under active investigation for the detection and treatment of cancer. Yet our understanding of nanoparticle delivery to tumors is limited by our ability to observe the uptake process on its own scale in living subjects. We chose to study single-walled carbon nanotubes (SWNTs) because they exhibit among the highest levels of tumor uptake across the wide variety of available nanoparticles. We target them using RGD (arginine-glycine-aspartic acid) peptide which directs them to integrins overexpressed on tumor vasculature and on the surface of some tumor cells (e.g., U87MG as used here). We employ intravital microscopy (IVM) to quantitatively examine the spatiotemporal framework of targeted SWNT uptake in a murine tumor model. IVM provided a dynamic microscale window into nanoparticle circulation, binding to tumor blood vessels, extravasation, binding to tumor cells, and tumor retention. RGD-SWNTs bound to tumor vasculature significantly more than controls (P<0.0001). RGD-SWNTs extravasated similarly compared to control RAD-SWNTs, but post-extravasation we observed as RGD-SWNTs eventually bound to individual tumor cells significantly more than RAD-SWNTs (p<0.0001) over time. RGD-SWNTs and RAD-SWNTs displayed similar signal in tumor for a week, but over time their curves significantly diverged (p<0.001) showing increasing RGD-SWNTs relative to untargeted SWNTs. We uncovered the complex spatiotemporal interplay between these competing uptake mechanisms. Specific uptake was delimited to early (1-6 hours) and late (1-4 weeks) time-points, while non-specific uptake dominated from 6 hours to 1 week. Our analysis revealed critical, quantitative insights into the dynamic, multifaceted mechanisms implicated in ligand-targeted SWNT accumulation in tumor using real-time observation.

Keywords: Intravital microscopy; cancer; nanoparticles; serial imaging; single-walled carbon nanotubes; specificity; targeting

References

  1. J Clin Invest. 2011 Jul;121(7):2768-80 - PubMed
  2. Nat Nanotechnol. 2009 Oct;4(10):627-33 - PubMed
  3. Cell. 1994 Dec 30;79(7):1157-64 - PubMed
  4. Biomaterials. 2012 Jul;33(20):5115-23 - PubMed
  5. Chem Commun (Camb). 2012 Apr 25;48(33):3911-26 - PubMed
  6. Nano Res. 2010 Oct 1;3(11):779-793 - PubMed
  7. Nano Lett. 2008 Sep;8(9):2599-606 - PubMed
  8. ACS Nano. 2010 Oct 26;4(10):5887-96 - PubMed
  9. Nat Med. 2007 Mar;13(3):372-7 - PubMed
  10. Nano Today. 2009 Jun;4(3):252-261 - PubMed
  11. Nat Nanotechnol. 2010 Jun;5(6):465-72 - PubMed
  12. Nature. 2009 Jan 1;457(7225):92-6 - PubMed
  13. Bioconjug Chem. 2008 Aug;19(8):1735-42 - PubMed
  14. Int J Nanomedicine. 2010 Oct 05;5:783-802 - PubMed
  15. Nano Lett. 2008 Sep;8(9):2800-5 - PubMed
  16. Nat Nanotechnol. 2009 Nov;4(11):773-80 - PubMed
  17. Nat Nanotechnol. 2008 Apr;3(4):216-21 - PubMed
  18. Microcirculation. 2010 Apr;17(3):206-25 - PubMed
  19. Nat Protoc. 2009;4(9):1372-82 - PubMed
  20. Cancer Res. 2012 Dec 1;72(23):6111-8 - PubMed
  21. Nano Lett. 2006 Apr;6(4):669-76 - PubMed
  22. Mol Cancer Ther. 2009 Oct;8(10):2861-71 - PubMed
  23. Int Immunopharmacol. 2003 Mar;3(3):319-28 - PubMed
  24. Nat Nanotechnol. 2007 Jan;2(1):47-52 - PubMed
  25. Nat Med. 2012 Apr 15;18(5):829-34 - PubMed
  26. ACS Nano. 2012 Apr 24;6(4):3346-55 - PubMed
  27. Cancer Res. 2006 Jul 1;66(13):6732-40 - PubMed
  28. Small. 2009 Feb;5(2):235-43 - PubMed
  29. Bioconjug Chem. 2007 Mar-Apr;18(2):389-96 - PubMed
  30. Drug Resist Updat. 2010 Feb-Apr;13(1-2):16-28 - PubMed
  31. Anal Bioanal Chem. 2011 Jan;399(1):3-27 - PubMed
  32. Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13511-6 - PubMed
  33. Nat Biotechnol. 2007 Mar;25(3):327-37 - PubMed
  34. Small. 2010 Oct 18;6(20):2222-9 - PubMed
  35. Cold Spring Harb Perspect Med. 2012 Mar;2(3):a006486 - PubMed
  36. Cancer Cell. 2009 Dec 8;16(6):510-20 - PubMed
  37. Nat Nanotechnol. 2008 Sep;3(9):557-62 - PubMed
  38. Cancer Res. 2007 Feb 1;67(3):1138-44 - PubMed
  39. FASEB J. 2005 Dec;19(14):2008-10 - PubMed
  40. Opt Lett. 2012 Mar 1;37(5):872-4 - PubMed
  41. Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15549-54 - PubMed
  42. Small. 2012 Mar 12;8(5):777-82 - PubMed
  43. Mol Pharm. 2008 Jul-Aug;5(4):496-504 - PubMed
  44. Bioconjug Chem. 2004 Jan-Feb;15(1):79-86 - PubMed
  45. J Pharm Sci. 2010 Jan;99(1):549-62 - PubMed
  46. Nano Lett. 2012 Jul 11;12(7):3369-77 - PubMed

Publication Types

Grant support