Display options
Share it on

J Phys Chem C Nanomater Interfaces. 2013 Dec 05;117(48):25650-25658. doi: 10.1021/jp407983h. Epub 2013 Nov 08.

Revisiting Surface-Enhanced Raman Scattering on Realistic Lithographic Gold Nanostripes.

The journal of physical chemistry. C, Nanomaterials and interfaces

I Sow, J Grand, G Lévi, J Aubard, N Félidj, J-C Tinguely, A Hohenau, J R Krenn

Affiliations

  1. Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7086 , 15 rue Jean de Baïf, 75013 Paris, France.
  2. Department of Physics and Technology, University of Tromsø , PG Rodumsveg 5b, N-9011 Tromsø, Troms, Norway.
  3. Karl-Franzens University and Erwin Schrödinger Institute for Nanoscale Research , A-8010 Graz, Austria.

PMID: 24340104 PMCID: PMC3856770 DOI: 10.1021/jp407983h

Abstract

In this article, we investigate the Surface-Enhanced Raman Scattering (SERS) efficiency of methylene blue (MB) molecules deposited on gold nanostripes which, due to their fabrication by electron beam lithography and thermal evaporation, present various degrees of crystallinity and nanoscale surface roughness (NSR). By comparing gold nanostructures with different degrees of roughness and crystallinity, we show that the NSR has a strong effect on the SERS intensity of MB probe molecules. In particular, the NSR features of the lithographic structures significantly enhance the Raman signal of MB molecules, even when the excitation wavelength lies far from the localized surface plasmon resonance (LSPR) of the stripes. These results are in very good agreement with numerical calculations of the SERS gain obtained using the discrete dipole approximation (DDA). The influence of NSR on the optical near-field response of lithographic structures thus appears crucial since they are widely used in the context of nano-optics or/and molecular sensing.

References

  1. Angew Chem Int Ed Engl. 2010 Dec 3;49(49):9397-400 - PubMed
  2. Science. 1997 Feb 21;275(5303):1102-6 - PubMed
  3. J Chem Phys. 2004 Apr 15;120(15):7141-6 - PubMed
  4. Nano Lett. 2010 Dec 8;10(12):5006-13 - PubMed
  5. Phys Rev Lett. 2000 May 15;84(20):4721-4 - PubMed
  6. J Am Chem Soc. 2013 Jan 9;135(1):301-8 - PubMed
  7. ACS Nano. 2011 May 24;5(5):3878-87 - PubMed
  8. Phys Chem Chem Phys. 2009 Jul 28;11(28):5909-14 - PubMed
  9. Nano Lett. 2005 Oct;5(10):2034-8 - PubMed
  10. ACS Nano. 2011 Jul 26;5(7):5945-56 - PubMed
  11. Chem Rev. 2013 Mar 13;113(3):1391-428 - PubMed
  12. J Chem Phys. 2005 Jan 1;122(1):11102 - PubMed
  13. Langmuir. 2012 Mar 27;28(12):5444-9 - PubMed
  14. Nanotechnology. 2010 Nov 26;21(47):475501 - PubMed
  15. Nano Lett. 2005 Feb;5(2):253-8 - PubMed
  16. J Chem Phys. 2008 Mar 7;128(9):094702 - PubMed
  17. Phys Rev Lett. 2011 Feb 25;106(8):083003 - PubMed
  18. ACS Nano. 2013 Mar 26;7(3):2751-7 - PubMed
  19. Nano Lett. 2008 Aug;8(8):2497-502 - PubMed
  20. J Am Chem Soc. 2009 Jan 21;131(2):849-54 - PubMed
  21. Opt Express. 2009 Mar 2;17(5):3741-53 - PubMed
  22. Phys Chem Chem Phys. 2013 Jan 7;15(1):21-36 - PubMed
  23. ACS Nano. 2012 Nov 27;6(11):9828-36 - PubMed
  24. Nano Lett. 2011 Nov 9;11(11):5013-9 - PubMed
  25. Phys Chem Chem Phys. 2013 Apr 21;15(15):5301-11 - PubMed
  26. Opt Express. 2006 Jan 23;14(2):847-57 - PubMed
  27. Nano Lett. 2011 Feb 9;11(2):482-7 - PubMed

Publication Types