Display options
Share it on

Biomed Opt Express. 2013 Oct 18;4(11):2527-39. doi: 10.1364/BOE.4.002527. eCollection 2013.

In vivo imaging of retinal pigment epithelium cells in age related macular degeneration.

Biomedical optics express

Ethan A Rossi, Piero Rangel-Fonseca, Keith Parkins, William Fischer, Lisa R Latchney, Margaret A Folwell, David R Williams, Alfredo Dubra, Mina M Chung

Affiliations

  1. Center for Visual Science, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.

PMID: 24298413 PMCID: PMC3829547 DOI: 10.1364/BOE.4.002527

Abstract

Morgan and colleagues demonstrated that the RPE cell mosaic can be resolved in the living human eye non-invasively by imaging the short-wavelength autofluorescence using an adaptive optics (AO) ophthalmoscope. This method, based on the assumption that all subjects have the same longitudinal chromatic aberration (LCA) correction, has proved difficult to use in diseased eyes, and in particular those affected by age-related macular degeneration (AMD). In this work, we improve Morgan's method by accounting for chromatic aberration variations by optimizing the confocal aperture axial and transverse placement through an automated iterative maximization of image intensity. The increase in image intensity after algorithmic aperture placement varied depending upon patient and aperture position prior to optimization but increases as large as a factor of 10 were observed. When using a confocal aperture of 3.4 Airy disks in diameter, images were obtained using retinal radiant exposures of less than 2.44 J/cm(2), which is ~22 times below the current ANSI maximum permissible exposure. RPE cell morphologies that were strikingly similar to those seen in postmortem histological studies were observed in AMD eyes, even in areas where the pattern of fluorescence appeared normal in commercial fundus autofluorescence (FAF) images. This new method can be used to study RPE morphology in AMD and other diseases, providing a powerful tool for understanding disease pathogenesis and progression, and offering a new means to assess the efficacy of treatments designed to restore RPE health.

Keywords: (110.1080) Active or adaptive optics; (170.1610) Clinical applications; (170.3880) Medical and biological imaging; (170.4470) Ophthalmology; (330.5310) Vision - photoreceptors

References

  1. Invest Ophthalmol Vis Sci. 1997 Feb;38(2):478-86 - PubMed
  2. Ophthalmology. 1985 May;92(5):615-27 - PubMed
  3. Invest Ophthalmol Vis Sci. 2011 Dec 09;52(13):9379-90 - PubMed
  4. Opt Express. 2005 Jan 24;13(2):400-9 - PubMed
  5. Br J Ophthalmol. 1995 May;79(5):407-12 - PubMed
  6. J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1250-65 - PubMed
  7. Mol Vis. 1999 Nov 03;5:31 - PubMed
  8. Arch Ophthalmol. 1997 May;115(5):609-15 - PubMed
  9. Spat Vis. 1997;10(4):437-42 - PubMed
  10. Invest Ophthalmol Vis Sci. 2009 Dec;50(12):6015-22 - PubMed
  11. Arch Ophthalmol. 1975 Jan;93(1):19-25 - PubMed
  12. Invest Ophthalmol Vis Sci. 2009 Mar;50(3):1350-9 - PubMed
  13. Ophthalmology. 2011 Sep;118(9):1844-51 - PubMed
  14. Invest Ophthalmol Vis Sci. 1995 Mar;36(3):718-29 - PubMed
  15. Opt Express. 2006 Aug 7;14(16):7144-58 - PubMed
  16. Am J Ophthalmol. 2002 Jun;133(6):780-6 - PubMed
  17. Am J Ophthalmol. 2007 Mar;143(3):463-72 - PubMed
  18. Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2655-61 - PubMed
  19. Biomed Opt Express. 2011 Jun 1;2(6):1757-68 - PubMed
  20. Appl Opt. 1992 Jul 1;31(19):3594-600 - PubMed
  21. Opt Express. 2006 Dec 11;14(25):12230-42 - PubMed
  22. Invest Ophthalmol Vis Sci. 2000 Feb;41(2):496-504 - PubMed
  23. Trans Am Ophthalmol Soc. 1972;70:409-36 - PubMed
  24. Spat Vis. 1997;10(4):433-6 - PubMed
  25. Nature. 2011 Mar 17;471(7338):325-30 - PubMed
  26. Invest Ophthalmol Vis Sci. 2008 Aug;49(8):3715-29 - PubMed
  27. Ophthalmology. 2013 Apr;120(4):821-8 - PubMed

Publication Types

Grant support