Display options
Share it on

Drug Deliv Transl Res. 2013 Dec 01;3(6). doi: 10.1007/s13346-013-0178-3.

Label-Free Raman Microspectral Analysis for Comparison of Cellular Uptake and Distribution between Non-Targeted and EGFR-Targeted Biodegradable Polymeric Nanoparticles.

Drug delivery and translational research

Tatyana Chernenko, Fulden Buyukozturk, Milos Miljkovic, Rebecca Carrier, Max Diem, Mansoor Amiji

Affiliations

  1. Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences.

PMID: 24298430 PMCID: PMC3843494 DOI: 10.1007/s13346-013-0178-3

Abstract

Active targeted delivery of nanoparticle-encapsulated agents to tumor cells in vivo is expected to enhance therapeutic effect with significantly less non-specific toxicity. Active targeting is based on surface modification of nanoparticles with ligands that bind with extracellular targets and enhance payload delivery in the cells. In this study, we have used label-free Raman micro-spectral analysis and kinetic modeling to study cellular interactions and intracellular delivery of C6-ceramide using a non-targeted and an epidermal growth factor receptor (EGFR) targeted biodegradable polymeric nano-delivery systems, in EGFR-expressing human ovarian adenocarcinoma (SKOV3) cells. The results show that EGFR peptide-modified nanoparticles were rapidly internalized in SKOV3 cells leading to significant intracellular accumulation as compared to non-specific uptake by the non-targeted nanoparticles. Raman micro-spectral analysis enables visualization and quantification of the carrier system, drug-load, and responses of the biological systems interrogated, without exogenous staining and labeling procedures.

Keywords: Biodegradable polymeric nanoparticle; Raman micro-spectroscopy; epidermal growth factor receptor; targeted drug delivery

References

  1. Analyst. 2010 Aug;135(8):2002-13 - PubMed
  2. Clin Radiol. 2010 Jul;65(7):500-16 - PubMed
  3. Adv Drug Deliv Rev. 2004 Jan 13;56(1):17-30 - PubMed
  4. Bioorg Med Chem. 2009 Apr 15;17(8):2950-62 - PubMed
  5. Chem Rev. 1997 Apr 1;97(2):391-410 - PubMed
  6. ACS Nano. 2009 Nov 24;3(11):3552-9 - PubMed
  7. Annu Rev Biomed Eng. 2006;8:343-75 - PubMed
  8. Molecules. 2005 Jan 31;10(1):146-61 - PubMed
  9. Mol Cancer. 2008 Sep 12;7:69 - PubMed
  10. J Biomed Mater Res. 1999;48(3):342-53 - PubMed
  11. Adv Drug Deliv Rev. 2005 Jun 15;57(8):1144-70 - PubMed
  12. J Am Chem Soc. 2004 Oct 20;126(41):13226-7 - PubMed
  13. Analyst. 2009 Jun;134(6):1046-57 - PubMed
  14. Nat Rev Drug Discov. 2008 Mar;7(3):205-20 - PubMed
  15. Cancer Res. 2006 Apr 1;66(7):3603-10 - PubMed
  16. J Biophotonics. 2009 Feb;2(1-2):29-36 - PubMed
  17. Clin Cancer Res. 2006 Dec 15;12(24):7242-51 - PubMed
  18. J Control Release. 2000 Mar 1;65(1-2):271-84 - PubMed
  19. Mol Pharm. 2011 Feb 7;8(1):185-203 - PubMed
  20. J Control Release. 2008 Sep 10;130(2):121-8 - PubMed
  21. J Clin Oncol. 2005 Apr 10;23(11):2445-59 - PubMed
  22. Int J Pharm. 2002 Dec 5;249(1-2):127-38 - PubMed
  23. Science. 2004 Mar 19;303(5665):1818-22 - PubMed
  24. Curr Vasc Pharmacol. 2004 Jul;2(3):281-99 - PubMed
  25. Pharm Res. 2007 Jan;24(1):1-16 - PubMed
  26. J Control Release. 2001 Jun 15;73(2-3):137-72 - PubMed
  27. Chem Rev. 1999 Nov 10;99(11):3181-98 - PubMed
  28. Annu Rev Med. 2010;61:359-73 - PubMed

Publication Types

Grant support