Display options
Share it on

Mol Ther Nucleic Acids. 2013 Dec 03;2:e136. doi: 10.1038/mtna.2013.65.

Lipid Nanoparticle Delivery of siRNA to Silence Neuronal Gene Expression in the Brain.

Molecular therapy. Nucleic acids

Ravi L Rungta, Hyun B Choi, Paulo Jc Lin, Rebecca Wy Ko, Donovan Ashby, Jay Nair, Muthiah Manoharan, Pieter R Cullis, Brian A Macvicar

Affiliations

  1. Brain Research Centre, Department of Psychiatry, University of British Columbia, British Columbia, Canada.

PMID: 24301867 PMCID: PMC3889191 DOI: 10.1038/mtna.2013.65

Abstract

Manipulation of gene expression in the brain is fundamental for understanding the function of proteins involved in neuronal processes. In this article, we show a method for using small interfering RNA (siRNA) in lipid nanoparticles (LNPs) to efficiently silence neuronal gene expression in cell culture and in the brain in vivo through intracranial injection. We show that neurons accumulate these LNPs in an apolipoprotein E-dependent fashion, resulting in very efficient uptake in cell culture (100%) with little apparent toxicity. In vivo, intracortical or intracerebroventricular (ICV) siRNA-LNP injections resulted in knockdown of target genes either in discrete regions around the injection site or in more widespread areas following ICV injections with no apparent toxicity or immune reactions from the LNPs. Effective targeted knockdown was demonstrated by showing that intracortical delivery of siRNA against GRIN1 (encoding GluN1 subunit of the NMDA receptor (NMDAR)) selectively reduced synaptic NMDAR currents in vivo as compared with synaptic AMPA receptor currents. Therefore, LNP delivery of siRNA rapidly manipulates expression of proteins involved in neuronal processes in vivo, possibly enabling the development of gene therapies for neurological disorders.Molecular Therapy-Nucleic Acids (2013) 2, e136; doi:10.1038/mtna.2013.65; published online 3 December 2013.

References

  1. Biochemistry. 1996 Feb 27;35(8):2618-24 - PubMed
  2. Mol Neurodegener. 2007 Apr 12;2:7 - PubMed
  3. Angew Chem Int Ed Engl. 2012 Aug 20;51(34):8529-33 - PubMed
  4. J Neurosci. 2010 May 5;30(18):6171-7 - PubMed
  5. Neuron. 2012 Jun 21;74(6):1031-44 - PubMed
  6. Nucleic Acids Res. 2010 Nov;38(20):7320-31 - PubMed
  7. J Physiol. 1991 Feb;433:615-30 - PubMed
  8. Neuron. 2006 May 4;50(3):377-88 - PubMed
  9. Nat Neurosci. 2002 Aug;5(8):751-9 - PubMed
  10. J Clin Invest. 2006 Aug;116(8):2290-6 - PubMed
  11. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5567-72 - PubMed
  12. J Neurosci. 1996 May 15;16(10):3166-77 - PubMed
  13. Nat Rev Genet. 2011 May;12(5):329-40 - PubMed
  14. Nature. 1981 Apr 9;290(5806):527-8 - PubMed
  15. Mol Ther. 2010 Jul;18(7):1357-64 - PubMed
  16. J Pharmacol Toxicol Methods. 1998 Jul;40(1):1-12 - PubMed
  17. Biochim Biophys Acta. 1987 Jan 13;917(1):148-61 - PubMed
  18. Front Genet. 2012 Aug 20;3:154 - PubMed
  19. Mol Ther. 2011 Dec;19(12):2186-200 - PubMed
  20. Nat Neurosci. 2011 Apr;14(4):414-6 - PubMed
  21. Neuron. 2012 Sep 20;75(6):1094-104 - PubMed
  22. J Neurooncol. 2007 Jan;81(2):201-8 - PubMed
  23. Mol Ther Nucleic Acids. 2012 Aug 14;1:e37 - PubMed
  24. Nature. 2006 May 4;441(7089):111-4 - PubMed
  25. Pharmacol Rev. 2010 Sep;62(3):405-96 - PubMed
  26. Nat Rev Neurosci. 2009 May;10(5):333-44 - PubMed
  27. Neuron. 1997 Oct;19(4):801-12 - PubMed
  28. Nat Neurosci. 2009 Oct;12(10):1300-7 - PubMed
  29. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1864-9 - PubMed
  30. Nat Biotechnol. 2010 Feb;28(2):172-6 - PubMed
  31. Int J Cancer. 2012 Sep 1;131(5):E781-90 - PubMed
  32. Nature. 1998 Feb 19;391(6669):806-11 - PubMed
  33. Front Mol Neurosci. 2011 Jul 19;4:10 - PubMed
  34. Nat Med. 2003 Dec;9(12):1539-44 - PubMed

Publication Types