Display options
Share it on

Insects. 2013 Sep 01;4(3). doi: 10.3390/insects4030404.

Influence of Age and Nutritional Status on Flight Performance of the Asian Tiger Mosquito Aedes albopictus (Diptera: Culicidae).

Insects

Christian Kaufmann, Lauren F Collins, Mark R Brown

Affiliations

  1. Department of Entomology, University of Georgia, Athens, GA 30602, USA; [email protected] (L.F.C.); [email protected] (M.R.B.) ; Swiss National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, CH-8057 Zürich, Switzerland.
  2. Department of Entomology, University of Georgia, Athens, GA 30602, USA; [email protected] (L.F.C.); [email protected] (M.R.B.).

PMID: 24404384 PMCID: PMC3882092 DOI: 10.3390/insects4030404

Abstract

The Asian tiger mosquito, Aedes albopictus, is a competent vector for arboviruses and recently was implicated as the vector of the first autochthonous cases of dengue and chikungunya in southern Europe. The objective of this study was to analyze the flight performance of female Ae. albopictus of different ages that were starved, sugar-fed, or sugar-fed and blood-fed, using flight mills. After three days of starvation post emergence, females flew an average distance of 0.7 ± 0.5 km in 1.9 ± 1.5 h during a 16 h trial period, whereas sugar- or sugar- and blood-fed females of this age covered a significantly higher distance of around 3 km with a mean total flight time of around 6 h. The age of females (up to four weeks) had no effect on performance. The average of maximal continuous flight segments of sugar-fed (2.14 ± 0.69 h) and blood-fed (3.17 ± 0.82 h) females was distinctly higher than of starved females (0.38 ± 0.15 h) of which most flyers (83%) performed maximal flight segments that lasted no longer than 0.5 h. Overall, the results for the laboratory monitored flight performance of Ae. albopictus confirm their ability to disperse a few kilometres between breeding site and host.

Keywords: Aedes albopictus; distance; flight potential; mosquito; vector

References

  1. J Med Entomol. 2008 Jul;45(4):581-93 - PubMed
  2. Am J Prev Med. 2008 Nov;35(5):436-50 - PubMed
  3. J Med Entomol. 2010 Nov;47(6):1082-91 - PubMed
  4. Parassitologia. 2008 Jun;50(1-2):117-9 - PubMed
  5. Med Vet Entomol. 2010 Mar;24(1):83-7 - PubMed
  6. PLoS Negl Trop Dis. 2010 May 25;4(5):e646 - PubMed
  7. J Med Entomol. 2001 Jul;38(4):557-65 - PubMed
  8. Clin Microbiol Infect. 2010 Dec;16(12):1702-4 - PubMed
  9. J Med Entomol. 2005 May;42(3):312-8 - PubMed
  10. J Vector Ecol. 2001 Jun;26(1):21-31 - PubMed
  11. Euro Surveill. 2008 Mar 06;13(10): - PubMed
  12. J Med Entomol. 2001 Jul;38(4):566-71 - PubMed
  13. Clin Microbiol Rev. 2004 Jan;17(1):136-73 - PubMed
  14. Vector Borne Zoonotic Dis. 2012 Dec;12(12):1053-8 - PubMed
  15. Acta Trop. 2011 Apr;118(1):45-9 - PubMed
  16. Emerg Infect Dis. 2008 May;14(5):852-4 - PubMed
  17. J Med Entomol. 2010 Sep;47(5):778-82 - PubMed
  18. J Insect Physiol. 1968 Sep;14(9):1251-7 - PubMed
  19. Vector Borne Zoonotic Dis. 2009 Apr;9(2):191-6 - PubMed
  20. Med Vet Entomol. 2004 Sep;18(3):215-27 - PubMed
  21. J Med Entomol. 2009 Sep;46(5):1117-24 - PubMed
  22. J Am Mosq Control Assoc. 1998 Sep;14(3):340-3 - PubMed
  23. Med Vet Entomol. 2010 Dec;24(4):361-8 - PubMed
  24. Med Vet Entomol. 2004 Dec;18(4):351-60 - PubMed
  25. Lancet Infect Dis. 2006 Aug;6(8):463-4 - PubMed
  26. J Vector Ecol. 2004 Jun;29(1):140-53 - PubMed
  27. Mem Inst Oswaldo Cruz. 2003 Mar;98(2):191-8 - PubMed
  28. Am J Trop Med Hyg. 1995 Feb;52(2):177-9 - PubMed
  29. J Am Mosq Control Assoc. 1986 Jun;2(2):217-9 - PubMed
  30. J Med Entomol. 1973 Jul 31;10(4):397-9 - PubMed
  31. J Med Entomol. 2001 Jan;38(1):22-8 - PubMed

Publication Types

Grant support