Display options
Share it on

Physiol Rep. 2013 Jul;1(2):e00013. doi: 10.1002/phy2.13. Epub 2013 Jun 26.

The distribution of the preferred directions of the ON-OFF direction selective ganglion cells in the rabbit retina requires refinement after eye opening.

Physiological reports

Ya-Chien Chan, Chuan-Chin Chiao

Affiliations

  1. Institute of Molecular Medicine, National Tsing Hua University Hsinchu, 30013, Taiwan.

PMID: 24303104 PMCID: PMC3831909 DOI: 10.1002/phy2.13

Abstract

The ON-OFF direction selective ganglion cells (DSGCs) in the mammalian retina respond differentially for an object moving in different directions. DSGCs can be further segregated into four functional subtypes, namely those responsible for the detection of motion in the superior, inferior, anterior, and posterior directions of the visual field. Although it has been known that the basic neural circuit of direction selectivity is established at around the time of eye opening, it is less known if the four DSGC subtypes can be unambiguously distinguished at this time and whether their preferred directions are aligned with four canonical axes at this developmental stage. By examining the preferred directions of DSGCs in P10-12 rabbit retinas and characterizing their distribution pattern, we have shown that the preferred directions of DSGCs at around the time of eye opening are not distinctly segregated but rather are diffusely distributed along the four canonical axes. Similar results were found in the mouse retina by reanalyzing previously published data. Furthermore, taking into account the fact that the direction tuning strength of DSGCs at P10-12 is weaker than that in adults, this was found not to be correlated with their preferred directions, which suggests that the maturations of direction selectivity and preferred direction are independent processes. In addition, we also found that the subtypes of DSGCs, which do not display tracer coupling pattern in the adult, show extensive coupling at P10-12. Taken together, the present study supports that the significant refinement after eye opening is required for the development of the four functional DSGC subtypes in the rabbit retina.

Keywords: Direction tuning strength; retinal ganglion cells; tracer coupling pattern

References

  1. J Comp Neurol. 1977 Oct 1;175(3):275-86 - PubMed
  2. Trends Neurosci. 2011 Dec;34(12):638-45 - PubMed
  3. J Physiol. 1974 Jul;240(2):309-30 - PubMed
  4. Neuron. 2006 Oct 19;52(2):281-91 - PubMed
  5. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17663-8 - PubMed
  6. J Physiol. 2006 Oct 1;576(Pt 1):197-202 - PubMed
  7. Nat Rev Neurosci. 2012 Feb 08;13(3):194-208 - PubMed
  8. Curr Opin Neurobiol. 2009 Jun;19(3):293-7 - PubMed
  9. Neuron. 2007 Jul 19;55(2):179-86 - PubMed
  10. J Neurosci. 2004 Jan 7;24(1):161-9 - PubMed
  11. J Comp Neurol. 2005 Jan 31;482(1):85-93 - PubMed
  12. J Neurosci. 2010 Aug 18;30(33):11197-201 - PubMed
  13. J Neurosci. 2002 Sep 1;22(17):7712-20 - PubMed
  14. Nature. 2008 Dec 18;456(7224):952-6 - PubMed
  15. Nature. 2008 Mar 27;452(7186):478-82 - PubMed
  16. Annu Rev Cell Dev Biol. 2009;25:161-95 - PubMed
  17. J Physiol. 1968 Dec;199(3):613-35 - PubMed
  18. Vision Res. 2004 Dec;44(28):3419-27 - PubMed
  19. J Neurophysiol. 1981 Mar;45(3):397-416 - PubMed
  20. Neuron. 2011 Sep 22;71(6):974-94 - PubMed
  21. Science. 1963 Feb 1;139(3553):412-4 - PubMed
  22. J Neurochem. 1981 Oct;37(4):867-77 - PubMed
  23. Brain Res. 1981 May 18;212(2):447-53 - PubMed
  24. Vision Res. 2008 Oct;48(23-24):2466-75 - PubMed
  25. Annu Rev Neurosci. 1984;7:13-41 - PubMed
  26. Neuron. 2008 May 22;58(4):499-506 - PubMed
  27. J Physiol. 1962 Jan;160:106-54 - PubMed
  28. Neuron. 2001 Jun;30(3):771-80 - PubMed
  29. Vision Res. 1969 Jan;9(1):71-88 - PubMed
  30. Med Biol Eng. 1972 Jul;10(4):510-5 - PubMed
  31. Science. 1967 Feb 17;155(3764):841-2 - PubMed
  32. J Neurosci. 2013 Mar 13;33(11):4642-56 - PubMed
  33. Bioessays. 2011 Jan;33(1):61-72 - PubMed
  34. J Physiol. 2004 Oct 15;560(Pt 2):533-49 - PubMed
  35. Nat Neurosci. 2006 May;9(5):676-81 - PubMed
  36. Vis Neurosci. 2002 Jul-Aug;19(4):495-509 - PubMed
  37. Neuron. 2012 Nov 21;76(4):713-20 - PubMed
  38. J Physiol. 1964 Oct;173:377-407 - PubMed
  39. J Neurosci. 2011 Jun 15;31(24):8760-9 - PubMed
  40. J Physiol. 2009 Feb 15;587(Pt 4):819-28 - PubMed
  41. Science. 1969 Aug 15;165(3894):712-4 - PubMed
  42. J Comp Neurol. 1990 Dec 15;302(3):657-74 - PubMed
  43. Brain Res. 1975 Apr 4;87(1):61-5 - PubMed
  44. Brain Res. 1978 Jun 30;149(2):365-78 - PubMed
  45. J Neurophysiol. 1971 Jan;34(1):139-47 - PubMed
  46. Neuron. 2011 Aug 25;71(4):683-94 - PubMed
  47. Curr Opin Neurobiol. 2011 Apr;21(2):228-37 - PubMed
  48. Neuron. 2011 Aug 11;71(3):425-32 - PubMed
  49. Neuron. 2009 Oct 29;64(2):200-12 - PubMed
  50. PLoS One. 2011 May 05;6(5):e19477 - PubMed
  51. J Physiol. 2008 Sep 15;586(18):4371-6 - PubMed
  52. J Neurosci. 1994 Nov;14(11 Pt 1):6301-16 - PubMed
  53. Nature. 2012 Oct 11;490(7419):219-25 - PubMed
  54. J Neurosci. 2011 May 25;31(21):7753-62 - PubMed
  55. Nature. 2011 Jan 20;469(7330):402-6 - PubMed
  56. J Physiol. 2005 Feb 1;562(Pt 3):915-23 - PubMed
  57. Pflugers Arch. 2008 Nov;457(2):561-8 - PubMed
  58. Nature. 2011 Jan 20;469(7330):407-10 - PubMed
  59. Brain Res. 1977 Nov 4;136(1):154-8 - PubMed
  60. J Neurosci. 2010 Jan 27;30(4):1452-62 - PubMed
  61. Curr Opin Neurobiol. 2009 Apr;19(2):162-7 - PubMed
  62. Neuron. 2009 May 14;62(3):327-34 - PubMed
  63. J Neurosci. 2008 Apr 30;28(18):4807-17 - PubMed

Publication Types