Display options
Share it on

Physiol Rep. 2013 Oct;1(5):e00117. doi: 10.1002/phy2.117. Epub 2013 Oct 23.

RBC deformability and amino acid concentrations after hypo-osmotic challenge may reflect chronic cell hydration status in healthy young men.

Physiological reports

Jodi D Stookey, Alexis Klein, Janice Hamer, Christine Chi, Annie Higa, Vivian Ng, Allen Arieff, Frans A Kuypers, Sandra Larkin, Erica Perrier, Florian Lang

Affiliations

  1. Children's Hospital Oakland Research Institute Oakland, California.

PMID: 24303184 PMCID: PMC3841048 DOI: 10.1002/phy2.117

Abstract

Biomarkers of chronic cell hydration status are needed to determine whether chronic hyperosmotic stress increases chronic disease risk in population-representative samples. In vitro, cells adapt to chronic hyperosmotic stress by upregulating protein breakdown to counter the osmotic gradient with higher intracellular amino acid concentrations. If cells are subsequently exposed to hypo-osmotic conditions, the adaptation results in excess cell swelling and/or efflux of free amino acids. This study explored whether increased red blood cell (RBC) swelling and/or plasma or urine amino acid concentrations after hypo-osmotic challenge might be informative about relative chronic hyperosmotic stress in free-living men. Five healthy men (20-25 years) with baseline total water intake below 2 L/day participated in an 8-week clinical study: four 2-week periods in a U-shaped A-B-C-A design. Intake of drinking water was increased by +0.8 ± 0.3 L/day in period 2, and +1.5 ± 0.3 L/day in period 3, and returned to baseline intake (0.4 ± 0.2 L/day) in period 4. Each week, fasting blood and urine were collected after a 750 mL bolus of drinking water, following overnight water restriction. The periods of higher water intake were associated with significant decreases in RBC deformability (index of cell swelling), plasma histidine, urine arginine, and urine glutamic acid. After 4 weeks of higher water intake, four out of five participants had ½ maximal RBC deformability below 400 mmol/kg; plasma histidine below 100 μmol/L; and/or undetectable urine arginine and urine glutamic acid concentrations. Work is warranted to pursue RBC deformability and amino acid concentrations after hypo-osmotic challenge as possible biomarkers of chronic cell hydration.

Keywords: Amino acid; RBC deformability; arginine; biomarker; cell hydration; glutamate; healthy adults; histidine; water intake

References

  1. Am J Physiol Regul Integr Comp Physiol. 2007 Feb;292(2):R700-5 - PubMed
  2. Am J Physiol Endocrinol Metab. 2007 Jun;292(6):E1683-93 - PubMed
  3. Blood. 1983 May;61(5):899-910 - PubMed
  4. Best Pract Res Clin Endocrinol Metab. 2003 Dec;17(4):471-503 - PubMed
  5. Am J Physiol Renal Physiol. 2010 Jan;298(1):F95-102 - PubMed
  6. Perit Dial Int. 1999 Mar-Apr;19(2):124-30 - PubMed
  7. J Bacteriol. 1995 Aug;177(15):4342-9 - PubMed
  8. J Appl Physiol (1985). 1988 Jul;65(1):325-31 - PubMed
  9. Med Sci Sports Exerc. 2004 May;36(5):897-904 - PubMed
  10. Diabetes. 2012 Jul;61(7):1895-902 - PubMed
  11. Diabetes. 1983 Nov;32(11):1028-34 - PubMed
  12. Neurochem Res. 2004 Jan;29(1):65-72 - PubMed
  13. Sports Med. 1994 Dec;18(6):419-37 - PubMed
  14. J Clin Invest. 1997 Oct 1;100(7):1847-52 - PubMed
  15. Miner Electrolyte Metab. 1986;12(5-6):383-9 - PubMed
  16. J Clin Invest. 1995 Jun;95(6):2926-37 - PubMed
  17. Cell Physiol Biochem. 2006;18(1-3):113-22 - PubMed
  18. Endocrinology. 1995 May;136(5):2189-97 - PubMed
  19. Med Sci Sports Exerc. 1992 Jun;24(6):645-56 - PubMed
  20. J Am Coll Nutr. 2007 Oct;26(5 Suppl):535S-541S - PubMed
  21. Clin J Am Soc Nephrol. 2011 Mar;6(3):640-7 - PubMed
  22. J Physiol. 1993 Jan;460:467-85 - PubMed
  23. Am J Physiol Renal Physiol. 2010 Feb;298(2):F461-70 - PubMed
  24. Int J Alzheimers Dis. 2012;2012:918680 - PubMed
  25. J Clin Pathol. 1983 Mar;36(3):334-6 - PubMed
  26. Lancet. 1993 May 22;341(8856):1330-2 - PubMed
  27. Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1075-81 - PubMed
  28. Mol Cell Biochem. 2004 Jul;262(1-2):111-8 - PubMed
  29. FEBS Lett. 1993 Dec 20;336(1):153-8 - PubMed
  30. Am J Physiol. 1990 Sep;259(3 Pt 1):E437-42 - PubMed
  31. J Physiol Pharmacol. 1999 Jun;50(2):259-73 - PubMed
  32. Am J Clin Pathol. 1982 May;77(5):561-7 - PubMed
  33. Curr Vasc Pharmacol. 2012 Jan;10(1):4-18 - PubMed
  34. Mol Cell Endocrinol. 2000 Apr 25;162(1-2):203-10 - PubMed
  35. J Amino Acids. 2010;2010:346237 - PubMed
  36. J Clin Endocrinol Metab. 2009 Oct;94(10):3647-55 - PubMed
  37. Physiol Rev. 1998 Jan;78(1):247-306 - PubMed
  38. Biochem Biophys Res Commun. 1989 Sep 15;163(2):1032-7 - PubMed
  39. Arch Dis Child. 2012 Jun;97(6):502-7 - PubMed
  40. Am J Physiol Endocrinol Metab. 2001 Feb;280(2):E214-20 - PubMed
  41. Ann Rheum Dis. 1988 Jan;47(1):48-52 - PubMed
  42. Am J Med Sci. 1990 Dec;300(6):402-12 - PubMed
  43. Am J Clin Nutr. 2008 Jun;87(6):1860-6 - PubMed
  44. Am J Physiol. 1999 Jan;276(1):E188-95 - PubMed
  45. Diabetologia. 1985 Jul;28(7):412-9 - PubMed
  46. J Appl Physiol (1985). 2008 Sep;105(3):816-24 - PubMed
  47. Science. 1982 Sep 24;217(4566):1214-22 - PubMed
  48. Am J Physiol. 1988 Oct;255(4 Pt 2):F626-34 - PubMed
  49. Eur J Appl Physiol. 2008 Jul;103(5):585-94 - PubMed

Publication Types

Grant support