Display options
Share it on

Exp Ther Med. 2014 Jan;7(1):17-22. doi: 10.3892/etm.2013.1382. Epub 2013 Nov 06.

Mechanisms of the immunosuppressive effects of mouse adipose tissue-derived mesenchymal stromal cells on mouse alloreactively stimulated spleen cells.

Experimental and therapeutic medicine

Ryo Nagaya, Masako Mizuno-Kamiya, Eiji Takayama, Harumi Kawaki, Ippei Onoe, Toshiichiro Tanabe, Kuniteru Nagahara, Nobuo Kondoh

Affiliations

  1. Department of Oral Implantology, Asahi University School of Dentistry, Mizuho-shi, Gifu 501-0296, Japan.
  2. Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho-shi, Gifu 501-0296, Japan.

PMID: 24348757 PMCID: PMC3860983 DOI: 10.3892/etm.2013.1382

Abstract

The mechanisms of immunomodulation by mesenchymal stromal cells remain poorly understood. In this study, the effects of mouse adipose tissue-derived mesenchymal stromal cells (ASCs) on mouse spleen cells alloreactively stimulated by anti-CD3 and anti-CD28 antibody-coated (anti-CD3/CD28) beads were observed. Production of interferon-γ by the anti-CD3/CD28 bead-stimulated spleen cells was significantly suppressed in co-culture with ASCs. However, an augmented intensity of CD69 on the stimulated spleen cells was not suppressed in the presence of ASCs. The immunosuppressive effects of ASCs were partially mediated by one or more soluble factors (26% suppression). However, the ASCs require cell-cell contact in order to maximally exert suppression (88%). The suppressive effect of ASCs mediated by direct cell contact was partially reversed following knockdown of β2 microglobulin, a component of the major histocompatibility complex (MHC) class I molecule, with siRNA. The results of the study demonstrated that ASCs have significant immune modulatory effects on alloreactively stimulated spleen cells. The effects of ASCs on spleen cells are dependent on soluble factor(s) and cell contact, which is mediated by the MHC class I complex on ASCs.

Keywords: adipose tissue-derived stromal cells; immunosuppression; interferon-γ; β2 microglobulin

References

  1. Exp Hematol. 1976 Sep;4(5):267-74 - PubMed
  2. Stem Cells. 2004;22(7):1338-45 - PubMed
  3. Blood. 2002 May 15;99(10):3838-43 - PubMed
  4. Transplantation. 2007 Jul 27;84(2):231-7 - PubMed
  5. Blood. 2008 Feb 1;111(3):1327-33 - PubMed
  6. Blood. 2007 Jan 1;109(1):228-34 - PubMed
  7. Lancet. 2008 May 10;371(9624):1579-86 - PubMed
  8. Mol Carcinog. 2008 Oct;47(10):744-56 - PubMed
  9. J Leukoc Biol. 2004 Feb;75(2):163-89 - PubMed
  10. Haematologica. 2003 Aug;88(8):845-52 - PubMed
  11. J Immunol. 2003 Oct 1;171(7):3426-34 - PubMed
  12. Leukemia. 2005 Sep;19(9):1597-604 - PubMed
  13. Cell Transplant. 2014 Apr;23(6):703-14 - PubMed
  14. Scand J Immunol. 2003 Jan;57(1):11-20 - PubMed
  15. Clin Exp Immunol. 2009 Apr;156(1):149-60 - PubMed
  16. Immunogenetics. 1992;36(2):117-20 - PubMed
  17. Blood. 2003 Aug 15;102(4):1548-9 - PubMed
  18. Science. 1997 Apr 4;276(5309):71-4 - PubMed
  19. Tissue Eng. 2001 Apr;7(2):211-28 - PubMed
  20. Gut. 2011 Jun;60(6):788-98 - PubMed
  21. Haematologica. 2011 Jan;96(1):16-23 - PubMed
  22. Nat Clin Pract Cardiovasc Med. 2006 Mar;3 Suppl 1:S33-7 - PubMed
  23. Lancet. 2004 May 1;363(9419):1439-41 - PubMed
  24. Stem Cells Transl Med. 2013 Jun;2(6):455-63 - PubMed
  25. Blood. 2006 Jan 1;107(1):367-72 - PubMed
  26. Science. 1999 Apr 2;284(5411):143-7 - PubMed
  27. Transplantation. 2003 Feb 15;75(3):389-97 - PubMed
  28. Blood. 2003 Nov 15;102(10):3837-44 - PubMed
  29. Transplantation. 2010 Jul 27;90(2):124-6 - PubMed
  30. Cytotherapy. 2012 Jan;14(1):70-9 - PubMed

Publication Types