Display options
Share it on

Cardiovasc Eng Technol. 2010 Mar;1(1). doi: 10.1007/s13239-010-0006-6.

Comparative Study of Continuous and Pulsatile Left Ventricular Assist Devices on Hemodynamics of a Pediatric End-to-Side Anastomotic Graft.

Cardiovascular engineering and technology

Ning Yang, Steven Deutsch, Eric G Paterson, Keefe B Manning

Affiliations

  1. Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA.
  2. Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA ; The Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
  3. The Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA ; Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

PMID: 24348881 PMCID: PMC3859142 DOI: 10.1007/s13239-010-0006-6

Abstract

Although there are many studies that focus on understanding the consequence of pumping mode (continuous vs. pulsatile) associated with ventricular assist devices (VADs) on pediatric vascular pulsatility, the impact on local hemodynamics has been largely ignored. Hence, we compare not only the hemodynamic parameters indicative of pulsatility but also the local flow fields in the aorta and the great vessels originating from the aortic arch. A physiologic graft anastomotic model is constructed based on a pediatric, patient specific, aorta with a graft attached on the ascending aorta. The flow is simulated using a previously validated second-order accurate Navier-Stokes flow solver based upon a finite volume approach. The major findings are: (1) pulsatile support provides a greater degree of vascular pulsatility when compared to continuous support, which, however, is still 20% less than pulsatility in the healthy aorta; (2) pulsatile support increases the flow in the great vessels, while continuous support decreases it; (3) complete VAD support results in turbulence in the aorta, with maximum principal Reynolds stresses for pulsatile support and continuous support of 7081 and 249 dyn/cm

Keywords: Anastomosis; Hemolysis; Oscillatory shear index; Reynolds stress; Wall shear stress

References

  1. J Thorac Cardiovasc Surg. 2007 Feb;133(2):517-24 - PubMed
  2. J Biomech. 1993 Dec;26(12):1377-88 - PubMed
  3. ASAIO J. 1999 Nov-Dec;45(6):610-4 - PubMed
  4. ASAIO J. 2006 Mar-Apr;52(2):132-9 - PubMed
  5. J Thorac Cardiovasc Surg. 1978 Apr;75(4):569-73 - PubMed
  6. Invest Radiol. 1989 Jul;24(7):511-6 - PubMed
  7. Int J Artif Organs. 1990 May;13(5):300-6 - PubMed
  8. J Thorac Cardiovasc Surg. 1978 Apr;75(4):579-84 - PubMed
  9. J Thorac Cardiovasc Surg. 1978 Apr;75(4):574-8 - PubMed
  10. ASAIO J. 2007 May-Jun;53(3):385-91 - PubMed
  11. Artif Organs. 1993 Feb;17(2):92-102 - PubMed
  12. Ann Biomed Eng. 1997 Mar-Apr;25(2):335-43 - PubMed
  13. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2001;4:103-14 - PubMed
  14. Ann Thorac Surg. 1997 Aug;64(2):511-5 - PubMed
  15. J Pediatr Surg. 1995 Mar;30(3):416-9 - PubMed
  16. Circulation. 1999 Mar 9;99(9):1215-21 - PubMed
  17. Biorheology. 1984;21(6):783-97 - PubMed
  18. Artif Organs. 2003 Oct;27(10):920-5 - PubMed
  19. Ann Biomed Eng. 2008 May;36(5):685-99 - PubMed
  20. Pediatr Nephrol. 2007 Oct;22(10):1743-9 - PubMed
  21. J Biomech Eng. 2010 Mar;132(3):031009 - PubMed
  22. J Biomech Eng. 2006 Oct;128(5):688-96 - PubMed
  23. ASAIO J. 2007 Nov-Dec;53(6):687-91 - PubMed
  24. Artif Organs. 2007 Dec;31(12):880-6 - PubMed
  25. Ann Thorac Surg. 1999 Oct;68(4):1336-42; discussion 1342-3 - PubMed
  26. Circulation. 2006 Feb 14;113(6):e85-151 - PubMed
  27. J Biomech Eng. 2009 Nov;131(11):111005 - PubMed
  28. J Biomech Eng. 2008 Dec;130(6):061012 - PubMed
  29. Circulation. 2006 Jan 3;113(1):147-55 - PubMed
  30. Artif Organs. 2004 Nov;28(11):1016-25 - PubMed

Publication Types

Grant support