Display options
Share it on

Front Cell Neurosci. 2013 Dec 27;7:280. doi: 10.3389/fncel.2013.00280. eCollection 2013.

Gacyclidine improves the survival and reduces motor deficits in a mouse model of amyotrophic lateral sclerosis.

Frontiers in cellular neuroscience

Yannick N Gerber, Alain Privat, Florence E Perrin

Affiliations

  1. Institute for Neurosciences of Montpellier (INM), INSERM U 1051 Montpellier, France ; "Integrative Biology of Neurodegeneration," IKERBASQUE Basque Foundation for Science, Neuroscience Department, University of the Basque Country Bilbao, Spain.
  2. Institute for Neurosciences of Montpellier (INM), INSERM U 1051 Montpellier, France.
  3. Institute for Neurosciences of Montpellier (INM), INSERM U 1051 Montpellier, France ; "Integrative Biology of Neurodegeneration," IKERBASQUE Basque Foundation for Science, Neuroscience Department, University of the Basque Country Bilbao, Spain ; "Integrative Biology of Neuroregeneration," Faculty of Science, University of Montpellier 2 Montpellier, France.

PMID: 24409117 PMCID: PMC3873512 DOI: 10.3389/fncel.2013.00280

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder typified by a massive loss of motor neurons with few therapeutic options. The exact cause of neuronal degeneration is unknown but it is now admitted that ALS is a multifactorial disease with several mechanisms involved including glutamate excitotoxicity. More specifically, N-methyl-D-aspartate (NMDA)-mediated cell death and impairment of the glutamate-transport has been suggested to play a key role in ALS pathophysiology. Thus, evaluating NMDAR antagonists is of high therapeutic interest. Gacyclidine, also named GK11, is a high affinity non-competitive NMDAR antagonist that may protect against motor neuron death in an ALS context. Moreover, GK11 presents a low intrinsic neurotoxicity and has already been used in two clinical trials for CNS lesions. In the present study, we investigated the influence of chronic administration of two doses of GK11 (0.1 and 1 mg/kg) on the survival and the functional motor activity of hSOD1(G93A) mice, an animal model of ALS. Treatment started at early symptomatic age (60 days) and was applied bi-weekly until the end stage of the disease. We first confirmed that functional alteration of locomotor activity was evident in the hSOD1(G93A) transgenic female mice by 60 days of age. A low dose of GK11 improved the survival of the mice by 4.3% and partially preserved body weight. Improved life span was associated with a delay in locomotor function impairment. Conversely, the high dose treatment worsened motor functions. These findings suggest that chronic administration of GK11 beginning at early symptomatic stage may be beneficial for patients with ALS.

Keywords: ALS; GK11; NMDA receptor antagonist; locomotion; survival

References

  1. Neurotoxicology. 2005 Dec;26(6):1001-13 - PubMed
  2. J Neurol Sci. 2005 Sep 15;236(1-2):1-7 - PubMed
  3. Semin Neurol. 2012 Jul;32(3):173-8 - PubMed
  4. Antioxid Redox Signal. 2009 Jul;11(7):1587-602 - PubMed
  5. Nat Rev Neurosci. 2013 Apr;14(4):248-64 - PubMed
  6. Epilepsy Curr. 2011 Mar;11(2):56-63 - PubMed
  7. PLoS One. 2012;7(4):e36000 - PubMed
  8. J Neurosci. 1996 Jul 1;16(13):4069-79 - PubMed
  9. J Chem Neuroanat. 2013 Nov;53:11-7 - PubMed
  10. Eur J Neurosci. 2005 Nov;22(9):2376-80 - PubMed
  11. Neuroscientist. 2013 Apr;19(2):137-44 - PubMed
  12. Eur J Pharmacol. 1992 May 14;215(2-3):199-208 - PubMed
  13. Cochrane Database Syst Rev. 2012 Mar 14;(3):CD001447 - PubMed
  14. Physiol Behav. 1999 Jul;66(5):723-9 - PubMed
  15. Muscle Nerve. 2002 Oct;26(4):438-58 - PubMed
  16. Biochim Biophys Acta. 2013 Feb;1832(2):312-22 - PubMed
  17. Eur J Pharmacol. 2013 Jan 5;698(1-3):6-18 - PubMed
  18. J Clin Neurol. 2007 Dec;3(4):181-6 - PubMed
  19. Brain Res. 2000 Aug 25;874(2):200-9 - PubMed
  20. J Neurosurg Spine. 2010 Jan;12(1):106-13 - PubMed
  21. Ann Neurol. 1996 Feb;39(2):147-57 - PubMed
  22. Expert Opin Ther Targets. 2007 Nov;11(11):1415-28 - PubMed
  23. Lancet Neurol. 2013 Mar;12(3):310-22 - PubMed
  24. Amyotroph Lateral Scler. 2010 Oct;11(5):456-60 - PubMed
  25. Neurosci Res. 2006 Jan;54(1):11-4 - PubMed
  26. Amyotroph Lateral Scler. 2010 Dec;11(6):514-9 - PubMed
  27. CNS Drug Rev. 2001 Summer;7(2):172-98 - PubMed
  28. J Neurotrauma. 2000 Jan;17(1):19-30 - PubMed
  29. Pharmacology. 2010;85(1):54-62 - PubMed
  30. CNS Neurol Disord Drug Targets. 2010 Jul;9(3):297-304 - PubMed
  31. J Neurosurg Spine. 2009 Oct;11(4):461-70 - PubMed
  32. PLoS One. 2012;7(9):e45503 - PubMed
  33. Neurochirurgie. 2004 Jun;50(2-3 Pt 1):83-95 - PubMed
  34. J Neurochem. 2007 Nov;103(4):1682-96 - PubMed
  35. PLoS One. 2011;6(6):e20582 - PubMed
  36. Eur J Neurosci. 2012 Jun;35(12):1908-16 - PubMed
  37. J Neurol Sci. 2000 Nov 1;180(1-2):29-34 - PubMed
  38. Brain Res Bull. 1993;30(3-4):381-6 - PubMed
  39. Front Cell Neurosci. 2011 Dec 12;5:26 - PubMed
  40. PLoS One. 2013 Nov 19;8(11):e81004 - PubMed
  41. Brain Res. 2005 Aug 16;1053(1-2):131-6 - PubMed
  42. J Neurotrauma. 2000 Nov;17(11):1079-93 - PubMed
  43. Brain Res. 1991 Oct 18;562(1):164-8 - PubMed
  44. Curr Med Chem. 2010;17(18):1942-199 - PubMed
  45. J Child Neurol. 1989 Jul;4(3):218-26 - PubMed

Publication Types