Display options
Share it on

Front Immunol. 2013 Dec 13;4:458. doi: 10.3389/fimmu.2013.00458.

Impact of HCMV Infection on NK Cell Development and Function after HSCT.

Frontiers in immunology

Mariella Della Chiesa, Michela Falco, Letizia Muccio, Alice Bertaina, Franco Locatelli, Alessandro Moretta

Affiliations

  1. DI.ME.S. Dipartimento di Medicina Sperimentale, Centro di Eccellenza per la Ricerca Biomedica, Università di Genova , Genova , Italy.
  2. Istituto Giannina Gaslini , Genova , Italy.
  3. Dipartimento di Onco-Ematologia Pediatrica, Ospedale Bambino Gesù , Roma , Italy ; University of Pavia , Pavia , Italy.

PMID: 24379818 PMCID: PMC3861788 DOI: 10.3389/fimmu.2013.00458

Abstract

Natural Killer (NK) cell function is regulated by an array of inhibitory and activating surface receptors that during NK cell differentiation, at variance with T and B cells, do not require genetic rearrangement. Importantly, NK cells are the first lymphocyte population recovering after hematopoietic stem cell transplantation (HSCT). Thus, their role in early immunity after HSCT is considered crucial, as they can importantly contribute to protect the host from tumor recurrence and viral infections before T-cell immunity is fully recovered. In order to acquire effector functions and regulatory receptors, NK cell precursors undergo a maturation process that can be analyzed during immune reconstitution after HSCT. In this context, the occurrence of human cytomegalovirus (HCMV) infection/reactivation was shown to accelerate NK cell maturation by promoting the differentiation of high frequencies of NK cells characterized by a KIR(+)NKG2A(-) and NKG2C(+) mature phenotype. Thus, it appears that the development of NK cells and the distribution of NK cell receptors can be deeply influenced by HCMV infection. Moreover, in HCMV-infected subjects the emergence of so called "memory-like" or "long-lived" NK cells has been documented. These cells could play an important role in protecting from infections and maybe from relapse in patients transplanted for leukemia. All the aspects regarding the influence of HCMV infection on NK cell development will be discussed.

Keywords: HCMV infection; KIR; NKG2C; hematopoietic stem cell transplantation; human NK cells

References

  1. Blood. 2011 Jan 6;117(1):98-107 - PubMed
  2. Am J Transplant. 2008 Jun;8(6):1312-7 - PubMed
  3. J Biol Chem. 2013 Mar 22;288(12):8679-8690 - PubMed
  4. PLoS One. 2010 Aug 06;5(8):e11966 - PubMed
  5. Biol Blood Marrow Transplant. 2009 Mar;15(3):315-25 - PubMed
  6. J Pediatr. 2005 Mar;146(3):423-5 - PubMed
  7. Blood. 2006 Feb 1;107(3):1230-2 - PubMed
  8. Immunity. 2006 Aug;25(2):331-42 - PubMed
  9. Nat Rev Immunol. 2005 Mar;5(3):201-14 - PubMed
  10. J Exp Med. 1995 Sep 1;182(3):875-84 - PubMed
  11. J Allergy Clin Immunol. 2013 Apr;131(4):1230-3, 1233.e1-2 - PubMed
  12. Eur J Immunol. 2012 Feb;42(2):447-57 - PubMed
  13. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):728-32 - PubMed
  14. Future Virol. 2012 Mar 1;7(3):279-293 - PubMed
  15. Blood. 2011 Jan 20;117(3):764-71 - PubMed
  16. Immun Ageing. 2012 Oct 31;9(1):23 - PubMed
  17. Eur J Haematol. 2008 Jul;81(1):18-25 - PubMed
  18. Eur J Immunol. 2011 Nov;41(11):3340-50 - PubMed
  19. Blood. 2010 Aug 26;116(8):1299-307 - PubMed
  20. Nature. 1998 Feb 19;391(6669):795-9 - PubMed
  21. Immunol Rev. 2006 Dec;214:56-72 - PubMed
  22. Trends Immunol. 2010 Nov;31(11):401-6 - PubMed
  23. Blood. 2008 Sep 15;112(6):2369-80 - PubMed
  24. J Immunol. 2007 Jul 1;179(1):89-94 - PubMed
  25. PLoS Pathog. 2011 Sep;7(9):e1002268 - PubMed
  26. N Engl J Med. 1989 Jun 29;320(26):1731-5 - PubMed
  27. Blood. 2004 Dec 1;104(12):3664-71 - PubMed
  28. Nature. 2005 Aug 4;436(7051):709-13 - PubMed
  29. Blood. 2012 Jan 12;119(2):399-410 - PubMed
  30. Rev Infect Dis. 1990 Sep-Oct;12 Suppl 7:S701-10 - PubMed
  31. Annu Rev Immunol. 1996;14:619-48 - PubMed
  32. Microbes Infect. 2002 Dec;4(15):1545-58 - PubMed
  33. Annu Rev Immunol. 2000;18:861-926 - PubMed
  34. Blood. 2008 Aug 1;112(3):461-9 - PubMed
  35. Front Immunol. 2013 Feb 21;4:40 - PubMed
  36. Exp Cell Res. 2010 May 1;316(8):1309-15 - PubMed
  37. Blood. 2010 Jan 14;115(2):274-81 - PubMed
  38. Blood. 2011 Aug 4;118(5):1402-12 - PubMed
  39. J Immunol. 2007 Jul 15;179(2):854-68 - PubMed
  40. Blood. 2007 Jul 15;110(2):578-86 - PubMed
  41. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2402-7 - PubMed
  42. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2886-91 - PubMed
  43. J Infect Dis. 2006 Jul 1;194(1):38-41 - PubMed
  44. Blood. 2008 Aug 1;112(3):914-5 - PubMed
  45. Eur J Immunol. 2012 Dec;42(12):3256-66 - PubMed
  46. J Exp Med. 2009 Oct 26;206(11):2557-72 - PubMed
  47. Blood. 2013 Apr 4;121(14):2678-88 - PubMed
  48. Blood. 2009 Oct 29;114(18):3822-30 - PubMed
  49. Trends Immunol. 2001 Nov;22(11):633-40 - PubMed
  50. J Immunol. 2012 Nov 15;189(10):5082-8 - PubMed
  51. Immunol Rev. 2006 Dec;214:202-18 - PubMed
  52. Eur J Immunol. 1997 Jun;27(6):1374-80 - PubMed
  53. J Immunol. 2002 Nov 1;169(9):5118-29 - PubMed
  54. Blood. 2012 Mar 15;119(11):2665-74 - PubMed
  55. Blood. 2012 Dec 6;120(24):4751-60 - PubMed
  56. Front Immunol. 2013 Feb 01;4:15 - PubMed
  57. Trends Immunol. 2009 Apr;30(4):143-9 - PubMed
  58. Am J Transplant. 2011 Jun;11(6):1302-7 - PubMed
  59. J Exp Med. 2011 Jan 17;208(1):13-21 - PubMed
  60. Blood. 2010 Nov 11;116(19):3865-74 - PubMed
  61. Blood. 2006 May 1;107(9):3624-31 - PubMed
  62. Blood. 2010 Nov 11;116(19):3853-64 - PubMed
  63. Annu Rev Immunol. 2001;19:197-223 - PubMed
  64. Acta Haematol. 2011;126(1):13-20 - PubMed
  65. J Immunol. 2007 Apr 15;178(8):4947-55 - PubMed
  66. J Immunol. 2011 Feb 15;186(4):1891-7 - PubMed
  67. Annu Rev Immunol. 1998;16:359-93 - PubMed
  68. AIDS. 2010 Jan 2;24(1):27-34 - PubMed
  69. Eur J Immunol. 2005 Jul;35(7):2071-80 - PubMed

Publication Types