Display options
Share it on

Cell Biosci. 2014 Jan 13;4(1):3. doi: 10.1186/2045-3701-4-3.

Comparative analysis of the activation of unfolded protein response by spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus HKU1.

Cell & bioscience

Kam-Leung Siu, Ching-Ping Chan, Kin-Hang Kok, Patrick C-Y Woo, Dong-Yan Jin

Affiliations

  1. Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong. [email protected].

PMID: 24410900 PMCID: PMC3930072 DOI: 10.1186/2045-3701-4-3

Abstract

BACKGROUND: Whereas severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is associated with severe disease, human coronavirus HKU1 (HCoV-HKU1) commonly circulates in the human populations causing generally milder illness. Spike (S) protein of SARS-CoV activates the unfolded protein response (UPR). It is not understood whether HCoV-HKU1 S protein has similar activity. In addition, the UPR-activating domain in SARS-CoV S protein remains to be identified.

RESULTS: In this study we compared S proteins of SARS-CoV and HCoV-HKU1 for their ability to activate the UPR. Both S proteins were found in the endoplasmic reticulum. Transmembrane serine protease TMPRSS2 catalyzed the cleavage of SARS-CoV S protein, but not the counterpart in HCoV-HKU1. Both S proteins showed a similar pattern of UPR-activating activity. Through PERK kinase they activated the transcription of UPR effector genes such as Grp78, Grp94 and CHOP. N-linked glycosylation was not required for the activation of the UPR by S proteins. S1 subunit of SARS-CoV but not its counterpart in HCoV-HKU1 was capable of activating the UPR. A central region (amino acids 201-400) of SARS-CoV S1 was required for this activity.

CONCLUSIONS: SARS-CoV and HCoV-HKU1 S proteins use distinct UPR-activating domains to exert the same modulatory effects on UPR signaling.

References

  1. J Virol. 2010 Apr;84(7):3134-46 - PubMed
  2. Biochem Biophys Res Commun. 2007 Jul 20;359(1):174-9 - PubMed
  3. Curr Opin Virol. 2012 Jun;2(3):264-75 - PubMed
  4. J Biol Chem. 2002 May 24;277(21):18728-35 - PubMed
  5. J Biol Chem. 2009 Jun 12;284(24):16202-16209 - PubMed
  6. Trends Microbiol. 2007 May;15(5):211-8 - PubMed
  7. Biochim Biophys Acta. 2008 Dec;1780(12):1383-7 - PubMed
  8. J Formos Med Assoc. 2013 Jul;112(7):372-81 - PubMed
  9. Cell Biosci. 2011 Feb 17;1(1):6 - PubMed
  10. J Biomol Screen. 2011 Sep;16(8):825-35 - PubMed
  11. J Virol. 2006 Sep;80(18):9279-87 - PubMed
  12. Virology. 2009 Dec 20;395(2):255-67 - PubMed
  13. Virology. 2009 May 10;387(2):402-13 - PubMed
  14. Clin Microbiol Rev. 2007 Oct;20(4):660-94 - PubMed
  15. Nat Rev Mol Cell Biol. 2012 Jan 18;13(2):89-102 - PubMed
  16. J Cell Sci. 2010 May 1;123(Pt 9):1438-48 - PubMed
  17. J Clin Microbiol. 2006 Jun;44(6):2063-71 - PubMed
  18. Free Radic Biol Med. 2005 Jun 15;38(12):1585-93 - PubMed
  19. N Engl J Med. 2012 Nov 8;367(19):1814-20 - PubMed
  20. Nat Rev Microbiol. 2009 Mar;7(3):226-36 - PubMed
  21. J Virol. 2008 May;82(9):4492-501 - PubMed
  22. J Biochem. 2004 Sep;136(3):343-50 - PubMed
  23. PLoS One. 2008 Jan 30;3(1):e1494 - PubMed
  24. Nat Cell Biol. 2011 Mar;13(3):184-90 - PubMed
  25. Viruses. 2009 Jun;1(1):57-71 - PubMed
  26. J Virol. 2007 Nov;81(21):12029-39 - PubMed
  27. Mol Cell Biol. 2003 Nov;23(21):7448-59 - PubMed
  28. Biochim Biophys Acta. 2013 Oct;1833(10):2165-75 - PubMed
  29. Nucleic Acids Res. 2005 Mar 30;33(6):1859-73 - PubMed
  30. J Virol. 2010 Oct;84(19):10016-25 - PubMed
  31. J Virol. 2013 Jun;87(11):6150-60 - PubMed
  32. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6 - PubMed
  33. J Virol. 2012 Nov;86(21):11745-53 - PubMed
  34. PLoS Pathog. 2013;9(4):e1003266 - PubMed
  35. Retrovirology. 2013 Apr 11;10:40 - PubMed
  36. J Virol. 2013 Jun;87(11):6081-90 - PubMed
  37. J Virol. 2010 Dec;84(24):12658-64 - PubMed
  38. Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7809-14 - PubMed
  39. Adv Virus Res. 2011;81:85-164 - PubMed
  40. J Virol. 2007 Oct;81(20):10981-90 - PubMed
  41. Cancer Res. 2013 Mar 15;73(6):1993-2002 - PubMed
  42. J Virol. 2010 Sep;84(17):8753-64 - PubMed
  43. Mol Cell Biol. 2005 Jun;25(11):4529-40 - PubMed
  44. PLoS Pathog. 2012;8(7):e1002783 - PubMed
  45. J Virol. 2011 Jan;85(2):873-82 - PubMed
  46. J Cell Biol. 2012 Jun 25;197(7):857-67 - PubMed
  47. PLoS Pathog. 2011 Oct;7(10):e1002315 - PubMed
  48. J Virol. 2010 Nov;84(21):11255-63 - PubMed
  49. Mol Immunol. 2010 Oct;47(16):2575-86 - PubMed
  50. J Virol. 2005 Jan;79(2):884-95 - PubMed
  51. Nat Med. 2004 Apr;10(4):368-73 - PubMed
  52. BMC Infect Dis. 2012 Dec 20;12:365 - PubMed
  53. J Biol Chem. 1998 Dec 11;273(50):33741-9 - PubMed
  54. Nat Cell Biol. 2006 Jul;8(7):717-24 - PubMed
  55. PLoS One. 2013 Jul 24;8(7):e70129 - PubMed
  56. J Virol. 2011 Dec;85(24):13363-72 - PubMed
  57. J Virol. 2008 Sep;82(17):8887-90 - PubMed
  58. Lancet. 2003 Apr 19;361(9366):1319-25 - PubMed
  59. J Virol. 2013 May;87(10):5502-11 - PubMed
  60. Cell Stress Chaperones. 2013 Jan;18(1):11-23 - PubMed
  61. PLoS One. 2009 Dec 17;4(12):e8342 - PubMed

Publication Types