Display options
Share it on

Global Spine J. 2012 Dec;2(4):213-20. doi: 10.1055/s-0032-1331460. Epub 2012 Dec 06.

Construct Rigidity after Fatigue Loading in Pedicle Subtraction Osteotomy with or without Adjacent Interbody Structural Cages.

Global spine journal

Vedat Deviren, Jessica A Tang, Justin K Scheer, Jenni M Buckley, Murat Pekmezci, R Trigg McClellan, Christopher P Ames

Affiliations

  1. Biomechanical Testing Facility, San Francisco General Hospital, San Francisco, California ; Department of Orthopaedic Surgery, University of California, San Francisco, California.
  2. Biomechanical Testing Facility, San Francisco General Hospital, San Francisco, California ; Department of Orthopaedic Surgery, University of California, San Francisco, California ; Department of Neurological Surgery, University of California, San Francisco, California ; San Francisco Orthopaedic Residency Program, St. Mary's Medical Center, San Francisco, California.
  3. Biomechanical Testing Facility, San Francisco General Hospital, San Francisco, California ; Department of Neurological Surgery, University of California, San Francisco, California.

PMID: 24353970 PMCID: PMC3864425 DOI: 10.1055/s-0032-1331460

Abstract

Introduction Studies document rod fracture in pedicle subtraction osteotomy (PSO) settings where disk spaces were preserved above or adjacent to the PSO. This study compares the multidirectional bending rigidity and fatigue life of PSO segments with or without interbody support. Methods Twelve specimens received bilateral T12-S1 posterior fixation and L3 PSO. Six received extreme lateral interbody fusion (XLIF) cages in addition to PSO at L2-L3 and L3-L4; six had PSO only. Flexion-extension, lateral bending, and axial rotation (AR) tests were conducted up to 7.5 Newton-meters (Nm) for groups: (1) posterior fixation, (2) L3 PSO, (3) addition of cages (six specimens). Relative motion across the osteotomy (L2-L4) and entire fixation site (T12-S1) was measured. All specimens were then fatigue tested for 35K cycles. Results Regardingmultiaxial bending, there was a significant 25.7% reduction in AR range of motion across L2-L4 following addition of cages. Regarding fatigue bending, dynamic stiffness, though not significant (p = 0.095), was 22.2% greater in the PSO + XLIF group than in the PSO-only group. Conclusions Results suggest that placement of interbody cages in PSO settings has a potential stabilizing effect, which is modestly evident in the acute setting. Inserting cages in a second-stage surgery remains a viable option and may benefit patients in terms of recovery but additional clinical studies are necessary to confirm this.

Keywords: XLIF; pedicle subtraction osteotomy; revision; rod fracture; spine biomechanics; structuralinterbody cages

References

  1. Spine (Phila Pa 1976). 2010 Dec 15;35(26 Suppl):S302-11 - PubMed
  2. J Neurosurg Spine. 2011 Jan;14(1):38-45 - PubMed
  3. Instr Course Lect. 2006;55:583-9 - PubMed
  4. Eur Spine J. 2011 Dec;20(12):2252-60 - PubMed
  5. Spine (Phila Pa 1976). 1991 Jun;16(6 Suppl):S256-60 - PubMed
  6. Clin Biomech (Bristol, Avon). 2008 Jun;23(5):536-44 - PubMed
  7. J Neurosurg Spine. 2006 Mar;4(3):206-12 - PubMed
  8. Neurosurg Clin N Am. 2007 Apr;18(2):289-94 - PubMed
  9. Spine (Phila Pa 1976). 2008 Jan 15;33(2):E38-43 - PubMed
  10. Spine (Phila Pa 1976). 1997 Mar 1;22(5):559-63 - PubMed
  11. Zhonghua Wai Ke Za Zhi. 2009 May 1;47(9):681-4 - PubMed
  12. Neurosurgery. 2012 Oct;71(4):862-7 - PubMed
  13. Spine (Phila Pa 1976). 2006 Sep 15;31(20):2329-36 - PubMed
  14. Eur Spine J. 2008 Nov;17(11):1522-30 - PubMed
  15. Spine (Phila Pa 1976). 2007 Sep 15;32(20):2189-97 - PubMed
  16. J Biomech Eng. 2001 Jun;123(3):212-7 - PubMed
  17. J Biomech Eng. 1982 May;104(2):112-8 - PubMed
  18. J Orthop Res. 2003 May;21(3):540-6 - PubMed
  19. Proc Inst Mech Eng H. 2011 Feb;225(2):194-8 - PubMed
  20. Spine (Phila Pa 1976). 2004 Aug 15;29(16):1731-6 - PubMed
  21. Spine (Phila Pa 1976). 2004 Nov 15;29(22):E510-4 - PubMed
  22. Spine (Phila Pa 1976). 1999 May 15;24(10):1003-9 - PubMed
  23. J Biomech. 2010 May 7;43(7):1422-5 - PubMed
  24. Spine J. 2006 Jul-Aug;6(4):435-43 - PubMed
  25. Spine (Phila Pa 1976). 1999 Aug 15;24(16):1712-20 - PubMed
  26. Spine J. 2005 Nov-Dec;5(6):590-9 - PubMed
  27. Spine (Phila Pa 1976). 2010 Dec 15;35(26 Suppl):S361-7 - PubMed
  28. Spine (Phila Pa 1976). 1995 Oct 1;20(19):2097-100 - PubMed

Publication Types