Display options
Share it on

Front Plant Sci. 2013 Dec 30;4:539. doi: 10.3389/fpls.2013.00539. eCollection 2013.

Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid.

Frontiers in plant science

Irene A Vos, Adriaan Verhage, Robert C Schuurink, Lewis G Watt, Corné M J Pieterse, Saskia C M Van Wees

Affiliations

  1. Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands.
  2. Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands.

PMID: 24416038 PMCID: PMC3874679 DOI: 10.3389/fpls.2013.00539

Abstract

In Arabidopsis, the MYC2 transcription factor on the one hand and the AP2/ERF transcription factors ORA59 and ERF1 on the other hand regulate distinct branches of the jasmonic acid (JA) signaling pathway in an antagonistic fashion, co-regulated by abscisic acid (ABA) and ethylene, respectively. Feeding by larvae of the specialist herbivorous insect Pieris rapae (small cabbage white butterfly) results in activation of the MYC-branch and concomitant suppression of the ERF-branch in insect-damaged leaves. Here we investigated differential JA signaling activation in undamaged systemic leaves of P. rapae-infested plants. We found that the MYC2 transcription factor gene was induced both in the local insect-damaged leaves and the systemic undamaged leaves of P. rapae-infested Arabidopsis plants. However, in contrast to the insect-damaged leaves, the undamaged tissue did not show activation of the MYC-branch marker gene VSP1. Comparison of the hormone signal signature revealed that the levels of JA and (+)-7-iso-jasmonoyl-L-isoleucine raised to similar extents in locally damaged and systemically undamaged leaves, but the production of ABA and the JA precursor 12-oxo-phytodienoic acid was enhanced only in the local herbivore-damaged leaves, and not in the distal undamaged leaves. Challenge of undamaged leaves of pre-infested plants with either P. rapae larvae or exogenously applied ABA led to potentiated expression levels of MYC2 and VSP1, with the latter reaching extremely high expression levels. Moreover, P. rapae-induced resistance, as measured by reduction of caterpillar growth on pre-infested plants, was blocked in the ABA biosynthesis mutant aba2-1, that was also impaired in P. rapae-induced expression of VSP1. Together, these results suggest that ABA is a crucial regulator of herbivore-induced resistance by activating primed JA-regulated defense responses upon secondary herbivore attack in Arabidopsis.

Keywords: MYC2; Pieris rapae; abscisic acid; jasmonic acid; priming; systemic defense

References

  1. Plant Physiol. 2005 Nov;139(3):1268-83 - PubMed
  2. Annu Rev Phytopathol. 2005;43:205-27 - PubMed
  3. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5602-7 - PubMed
  4. Plant Physiol. 2013 Aug;162(4):2106-24 - PubMed
  5. New Phytol. 2009;183(2):419-431 - PubMed
  6. Plant Physiol. 2005 Mar;137(3):1160-8 - PubMed
  7. Plant Physiol. 2012 Dec;160(4):2109-24 - PubMed
  8. Plant Cell. 2003 Jan;15(1):63-78 - PubMed
  9. Plant Physiol. 2005 Sep;139(1):5-17 - PubMed
  10. Curr Opin Plant Biol. 2008 Aug;11(4):443-8 - PubMed
  11. Nat Chem Biol. 2009 May;5(5):308-16 - PubMed
  12. Trends Plant Sci. 2013 Mar;18(3):149-56 - PubMed
  13. Annu Rev Phytopathol. 2011;49:317-43 - PubMed
  14. Plant Mol Biol. 1999 Nov;41(4):537-49 - PubMed
  15. PLoS One. 2013 Jun 11;8(6):e65502 - PubMed
  16. New Phytol. 2008;180(2):511-523 - PubMed
  17. Mol Plant Microbe Interact. 2007 Nov;20(11):1406-20 - PubMed
  18. Plant Physiol. 2010 Oct;154(2):536-40 - PubMed
  19. J Exp Bot. 2012 Jan;63(2):727-37 - PubMed
  20. Plant Cell. 2011 Feb;23(2):701-15 - PubMed
  21. Plant Physiol. 2008 Jul;147(3):1347-57 - PubMed
  22. Planta. 2010 Nov;232(6):1423-32 - PubMed
  23. Plant Cell. 1998 Dec;10(12):2103-13 - PubMed
  24. Trends Plant Sci. 2006 Apr;11(4):184-91 - PubMed
  25. Curr Opin Plant Biol. 2005 Oct;8(5):532-40 - PubMed
  26. Science. 1998 May 15;280(5366):1091-4 - PubMed
  27. Mol Plant. 2013 May;6(3):686-703 - PubMed
  28. Plant Physiol. 2006 Sep;142(1):352-63 - PubMed
  29. Trends Plant Sci. 2010 Sep;15(9):507-14 - PubMed
  30. Trends Plant Sci. 2012 May;17(5):250-9 - PubMed
  31. Mol Plant Microbe Interact. 2008 Jul;21(7):919-30 - PubMed
  32. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10625-30 - PubMed
  33. Nat Protoc. 2008;3(6):1101-8 - PubMed
  34. Plant Physiol. 2009 Jul;150(3):1576-86 - PubMed
  35. Plant Cell. 2004 Jul;16(7):1938-50 - PubMed
  36. FEBS J. 2009 Sep;276(17):4693-704 - PubMed
  37. Mol Plant Microbe Interact. 2005 Sep;18(9):923-37 - PubMed
  38. Trends Plant Sci. 2009 Jun;14(6):310-7 - PubMed
  39. Theor Appl Genet. 1982 Dec;61(4):385-93 - PubMed
  40. Plant Cell. 1994 May;6(5):751-759 - PubMed
  41. Plant J. 2009 Sep;59(6):974-86 - PubMed
  42. Plant J. 2009 Jul;59(2):292-302 - PubMed
  43. Mol Plant Microbe Interact. 2006 Oct;19(10):1062-71 - PubMed
  44. Plant Cell. 2005 Mar;17(3):987-99 - PubMed
  45. J Exp Bot. 2011 Mar;62(6):2143-54 - PubMed
  46. Front Plant Sci. 2011 Sep 26;2:47 - PubMed
  47. Phytochemistry. 2009 Sep;70(13-14):1581-8 - PubMed
  48. Methods Mol Biol. 2013;1011:35-49 - PubMed
  49. New Phytol. 2011 Jan;189(1):308-20 - PubMed
  50. Science. 1972 Feb 18;175(4023):776-7 - PubMed
  51. Plant Cell. 2004 Dec;16(12):3460-79 - PubMed
  52. Methods. 2001 Dec;25(4):402-8 - PubMed
  53. Annu Rev Plant Biol. 2008;59:41-66 - PubMed
  54. New Phytol. 2010 Jul;187(2):343-354 - PubMed
  55. Ann Bot. 2013 Jun;111(6):1021-58 - PubMed
  56. Annu Rev Cell Dev Biol. 2012;28:489-521 - PubMed

Publication Types