Display options
Share it on

Genes Cancer. 2013 Nov;4(11):460-75. doi: 10.1177/1947601913514851.

The Role of Ect2 Nuclear RhoGEF Activity in Ovarian Cancer Cell Transformation.

Genes & cancer

Lauren P Huff, Molly J Decristo, Dimitri Trembath, Pei Fen Kuan, Margaret Yim, Jinsong Liu, Danielle R Cook, C Ryan Miller, Channing J Der, Adrienne D Cox

Affiliations

  1. Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
  2. Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
  3. Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.
  4. Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.
  5. Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.
  6. Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA.
  7. School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
  8. Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA ; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
  9. Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA ; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
  10. Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA ; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA ; Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA.

PMID: 24386507 PMCID: PMC3877668 DOI: 10.1177/1947601913514851

Abstract

Ect2, a Rho guanine nucleotide exchange factor (RhoGEF), is atypical among RhoGEFs in its predominantly nuclear localization in interphase cells. One current model suggests that Ect2 mislocalization drives cellular transformation by promoting aberrant activation of cytoplasmic Rho family GTPase substrates. However, in ovarian cancers, where Ect2 is both amplified and overexpressed at the mRNA level, we observed that the protein is highly expressed and predominantly nuclear and that nuclear but not cytoplasmic Ect2 increases with advanced disease. Knockdown of Ect2 in ovarian cancer cell lines impaired their anchorage-independent growth without affecting their growth on plastic. Restoration of Ect2 expression rescued the anchorage-independent growth defect, but not if either the DH catalytic domain or the nuclear localization sequences of Ect2 were mutated. These results suggested a novel mechanism whereby Ect2 could drive transformation in ovarian cancer cells by acting as a RhoGEF specifically within the nucleus. Interestingly, Ect2 had an intrinsically distinct GTPase specificity profile in the nucleus versus the cytoplasm. Nuclear Ect2 bound preferentially to Rac1, while cytoplasmic Ect2 bound to RhoA but not Rac. Consistent with nuclear activation of endogenous Rac, Ect2 overexpression was sufficient to recruit Rac effectors to the nucleus, a process that required a functional Ect2 catalytic domain. Furthermore, expression of active nuclearly targeted Rac1 rescued the defect in transformed growth caused by Ect2 knockdown. Our work suggests a novel mechanism of Ect2-driven transformation, identifies subcellular localization as a regulator of GEF specificity, and implicates activation of nuclear Rac1 in cellular transformation.

Keywords: Ect2; Rac; RhoGEF; ovarian cancer

References

  1. J Biol Chem. 2005 Mar 25;280(12):11961-72 - PubMed
  2. Nature. 2011 Jun 29;474(7353):609-15 - PubMed
  3. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18622-7 - PubMed
  4. Mol Endocrinol. 2011 Sep;25(9):1565-78 - PubMed
  5. Clin Cancer Res. 2011 Sep 15;17(18):6040-51 - PubMed
  6. Nature. 2003 Aug 7;424(6949):694-8 - PubMed
  7. Cell. 1984 Dec;39(3 Pt 2):499-509 - PubMed
  8. Cancer Res. 2003 Aug 15;63(16):4927-35 - PubMed
  9. Methods Enzymol. 2008;439:53-72 - PubMed
  10. Trends Genet. 2011 Aug;27(8):295-306 - PubMed
  11. J Genet Genomics. 2010 Mar;37(3):159-72 - PubMed
  12. Biochem Soc Trans. 2012 Dec 1;40(6):1378-82 - PubMed
  13. Oncogene. 2012 Feb 9;31(6):716-27 - PubMed
  14. BMC Med Genomics. 2009 May 06;2:21 - PubMed
  15. Methods Enzymol. 2006;407:128-43 - PubMed
  16. Mol Biol Cell. 2006 Jul;17(7):3108-21 - PubMed
  17. Oncogene. 2006 Jan 26;25(4):566-78 - PubMed
  18. Cell. 1992 Aug 7;70(3):389-99 - PubMed
  19. Cancer. 2006 Dec 1;107(11):2730-40 - PubMed
  20. Clin Cancer Res. 2009 Jan 1;15(1):256-66 - PubMed
  21. Curr Biol. 1997 Oct 1;7(10):794-7 - PubMed
  22. Mol Cancer Res. 2012 Jul;10(7):958-68 - PubMed
  23. FEBS Lett. 2008 Jun 18;582(14):2093-101 - PubMed
  24. Small GTPases. 2011 Jul;2(4):202-210 - PubMed
  25. Nat Cell Biol. 2002 May;4(5):343-50 - PubMed
  26. Am J Pathol. 2008 Dec;173(6):1828-38 - PubMed
  27. J Cell Biol. 2005 Jan 31;168(3):429-39 - PubMed
  28. Methods Enzymol. 2006;406:425-37 - PubMed
  29. Am J Pathol. 2012 Aug;181(2):662-74 - PubMed
  30. Mol Biol Cell. 2008 Feb;19(2):536-45 - PubMed
  31. Gynecol Oncol. 2010 Mar;116(3):563-71 - PubMed
  32. Mol Cell Biol. 2009 Apr;29(7):1796-813 - PubMed
  33. Mol Pharmacol. 2007 Oct;72(4):993-1002 - PubMed
  34. PLoS One. 2010 Nov 29;5(11):e14082 - PubMed
  35. PLoS One. 2011 Feb 24;6(2):e17380 - PubMed
  36. Cancer Res. 2003 Nov 15;63(22):7959-67 - PubMed
  37. Cell. 1992 Aug 7;70(3):401-10 - PubMed
  38. Nat Rev Cancer. 2002 Feb;2(2):133-42 - PubMed
  39. J Biol Chem. 2004 Feb 20;279(8):7169-79 - PubMed
  40. Nat Cell Biol. 2010 Dec;12(12):1186-93 - PubMed
  41. J Cell Biol. 2005 Jan 17;168(2):221-32 - PubMed
  42. Cancer. 2006 May 1;106(9):1925-32 - PubMed
  43. J Cell Biol. 2008 May 5;181(3):485-96 - PubMed
  44. Nat Rev Mol Cell Biol. 2005 Feb;6(2):167-80 - PubMed
  45. Oncogene. 2009 Jul 16;28(28):2545-55 - PubMed
  46. Nat Cell Biol. 2012 Aug;14(8):818-828 - PubMed
  47. Cancer Discov. 2012 May;2(5):401-4 - PubMed
  48. J Biol Chem. 2003 Apr 4;278(14):12495-506 - PubMed
  49. Genes Cancer. 2011 Oct;2(10):932-42 - PubMed
  50. Genomics. 1995 May 1;27(1):220-2 - PubMed
  51. Int J Cancer. 2010 Jul 1;127(1):21-31 - PubMed
  52. Sci Signal. 2012 Sep 18;5(242):rs6 - PubMed
  53. Mol Biol Cell. 2004 Jul;15(7):3309-19 - PubMed
  54. Mol Cell Biol. 2009 Feb;29(4):1035-49 - PubMed
  55. Cell. 1974 Dec;3(4):355-9 - PubMed
  56. Clin Exp Metastasis. 2007;24(8):657-72 - PubMed
  57. J Biol Chem. 2005 Feb 18;280(7):5733-9 - PubMed
  58. J Cell Biol. 1999 Nov 29;147(5):921-8 - PubMed
  59. Cell. 2007 Jun 29;129(7):1430 - PubMed
  60. J Biol Chem. 2000 Jun 9;275(23):17233-6 - PubMed
  61. Nucleus. 2011 Jan-Feb;2(1):72-9 - PubMed
  62. Tumour Biol. 2010 Jan;31(1):59-67 - PubMed
  63. J Biol Chem. 2011 Mar 11;286(10):8149-8157 - PubMed
  64. J Biol Chem. 2004 Dec 17;279(51):53419-26 - PubMed
  65. J Biol Chem. 2002 Nov 8;277(45):42964-72 - PubMed
  66. Oncogene. 2009 Oct 15;28(41):3597-607 - PubMed
  67. Mol Biol Cell. 2008 Jan;19(1):8-16 - PubMed
  68. Nat Protoc. 2011 Dec 01;6(12):2050-60 - PubMed
  69. J Biol Chem. 2004 Jun 11;279(24):25226-33 - PubMed
  70. Cancer Res. 2006 Mar 15;66(6):3153-61 - PubMed
  71. Mod Pathol. 2006 Nov;19(11):1414-20 - PubMed
  72. EMBO J. 1998 Mar 2;17(5):1395-404 - PubMed
  73. Mol Cell Biol. 2010 Sep;30(17):4324-38 - PubMed
  74. Cancer Res. 2000 Oct 1;60(19):5382-5 - PubMed
  75. Adv Enzyme Regul. 2010;50(1):190-200 - PubMed
  76. Mol Cell Biol. 2004 Aug;24(15):6665-75 - PubMed
  77. Oncogene. 2006 Feb 9;25(6):827-37 - PubMed
  78. PLoS One. 2011 Feb 23;6(2):e17108 - PubMed
  79. J Biol Chem. 2010 Apr 16;285(16):11760-4 - PubMed
  80. Cell Signal. 2003 Dec;15(12):1071-80 - PubMed
  81. Cancer Sci. 2008 Dec;99(12):2532-9 - PubMed
  82. J Cell Biochem. 2003 Nov 1;90(4):819-36 - PubMed

Publication Types

Grant support