Display options
Share it on

Nat Nanotechnol. 2014 Feb;9(2):131-6. doi: 10.1038/nnano.2013.285. Epub 2014 Jan 19.

A surface-bound molecule that undergoes optically biased Brownian rotation.

Nature nanotechnology

James A Hutchison, Hiroshi Uji-i, Ania Deres, Tom Vosch, Susana Rocha, Sibylle Müller, Andreas A Bastian, Jörg Enderlein, Hassan Nourouzi, Chen Li, Andreas Herrmann, Klaus Müllen, Frans De Schryver, Johan Hofkens

Affiliations

  1. 1] Laboratory for Photochemistry and Spectroscopy, Katholieke Universiteit Leuven, Heverlee 3001 Belgium [2] ISIS & icFRC, Université de Strasbourg & CNRS UMR 7006, Strasbourg 67000, France.
  2. Laboratory for Photochemistry and Spectroscopy, Katholieke Universiteit Leuven, Heverlee 3001 Belgium.
  3. Nano-Science Center/Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
  4. Synthetic Chemistry Group, Max Plank Institute for Polymer Research, Mainz D-55128 Germany.
  5. Department of Polymer Chemistry, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
  6. Drittes Physikalisches Institut, Universität Göttingen, Göttingen D-37077 Germany.
  7. 1] Laboratory for Photochemistry and Spectroscopy, Katholieke Universiteit Leuven, Heverlee 3001 Belgium [2] Nano-Science Center/Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.

PMID: 24441983 DOI: 10.1038/nnano.2013.285

Abstract

Developing molecular systems with functions analogous to those of macroscopic machine components, such as rotors, gyroscopes and valves, is a long-standing goal of nanotechnology. However, macroscopic analogies go only so far in predicting function in nanoscale environments, where friction dominates over inertia. In some instances, ratchet mechanisms have been used to bias the ever-present random, thermally driven (Brownian) motion and drive molecular diffusion in desired directions. Here, we visualize the motions of surface-bound molecular rotors using defocused fluorescence imaging, and observe the transition from hindered to free Brownian rotation by tuning medium viscosity. We show that the otherwise random rotations can be biased by the polarization of the excitation light field, even though the associated optical torque is insufficient to overcome thermal fluctuations. The biased rotation is attributed instead to a fluctuating-friction mechanism in which photoexcitation of the rotor strongly inhibits its diffusion rate.

References

  1. J Chem Phys. 2006 Sep 28;125(12):124701 - PubMed
  2. Nature. 2005 Oct 27;437(7063):1337-40 - PubMed
  3. Nat Nanotechnol. 2006 Oct;1(1):25-35 - PubMed
  4. Nat Mater. 2005 Sep;4(9):699-703 - PubMed
  5. J Phys Chem B. 2010 Nov 18;114(45):14249-64 - PubMed
  6. ACS Nano. 2009 May 26;3(5):1042-8 - PubMed
  7. Chem Soc Rev. 2012 Mar 7;41(5):1892-910 - PubMed
  8. Angew Chem Int Ed Engl. 2008;47(32):6077-9 - PubMed
  9. Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10029-34 - PubMed
  10. Biophys J. 2007 Oct 15;93(8):2877-91 - PubMed
  11. Chem Soc Rev. 2009 Jun;38(6):1674-89 - PubMed
  12. Nat Nanotechnol. 2013 Jan;8(1):46-51 - PubMed
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):051702 - PubMed
  14. Chem Rev. 2010 Sep 8;110(9):5398-424 - PubMed
  15. J Microsc. 2003 Feb;209(Pt 2):143-8 - PubMed
  16. Langmuir. 2010 Apr 6;26(7):4807-12 - PubMed
  17. J Phys Chem Lett. 2011 Feb 10;2(5):438-442 - PubMed
  18. Chemistry. 2009;15(4):878-84 - PubMed
  19. Angew Chem Int Ed Engl. 2011 Jan 3;50(1):285-90 - PubMed
  20. Macromolecules. 2011 Apr 12;44(7):2276-2281 - PubMed
  21. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011701 - PubMed
  22. Science. 1997 May 9;276(5314):917-22 - PubMed
  23. Chemphyschem. 2008 Feb 1;9(2):202-20 - PubMed

Publication Types