Display options
Share it on

J Oral Maxillofac Res. 2010 Oct 01;1(3):e3. doi: 10.5037/jomr.2010.1303. eCollection 2010.

Protein adsorption to surface chemistry and crystal structure modification of titanium surfaces.

Journal of oral & maxillofacial research

Ryo Jimbo, Mikael Ivarsson, Anita Koskela, Young-Taeg Sul, Carina B Johansson

Affiliations

  1. Department of Prosthodontics, Faculty of Odontology, Malmö University Malmö Sweden. ; Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, Göteborg University Göteborg Sweden.
  2. Clinical Research Center, Örebro University Hosptial Örebro Sweden.
  3. Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, Göteborg University Göteborg Sweden. ; Institute for Clinical Dental Research, Korea University Seoul South Korea.
  4. Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University Örebro Sweden.

PMID: 24421973 PMCID: PMC3886052 DOI: 10.5037/jomr.2010.1303

Abstract

OBJECTIVES: To observe the early adsorption of extracellular matrix and blood plasma proteins to magnesium-incorporated titanium oxide surfaces, which has shown superior bone response in animal models.

MATERIAL AND METHODS: Commercially pure titanium discs were blasted with titanium dioxide (TiO2) particles (control), and for the test group, TiO2 blasted discs were further processed with a micro-arc oxidation method (test). Surface morphology was investigated by scanning electron microscopy, surface topography by optic interferometry, characterization by X-ray photoelectron spectroscopy (XPS), and by X-ray diffraction (XRD) analysis. The adsorption of 3 different proteins (fibronectin, albumin, and collagen type I) was investigated by an immunoblotting technique.

RESULTS: The test surface showed a porous structure, whereas the control surface showed a typical TiO2 blasted structure. XPS data revealed magnesium-incorporation to the anodic oxide film of the surface. There was no difference in surface roughness between the control and test surfaces. For the protein adsorption test, the amount of albumin was significantly higher on the control surface whereas the amount of fibronectin was significantly higher on the test surface. Although there was no significant difference, the test surface had a tendency to adsorb more collagen type I.

CONCLUSIONS: The magnesium-incorporated anodized surface showed significantly higher fibronectin adsorption and lower albumin adsorption than the blasted surface. These results may be one of the reasons for the excellent bone response previously observed in animal studies.

Keywords: albumins; collagen type I.; fibronectins; immunoblotting; magnesium; titanium dioxide

References

  1. J Bone Miner Res. 2010 Apr;25(4):706-15 - PubMed
  2. J Cell Sci. 2002 Oct 15;115(Pt 20):3861-3 - PubMed
  3. J Oral Maxillofac Res. 2010 Apr 01;1(1):e4 - PubMed
  4. J Biomed Mater Res. 2001 Nov;57(2):258-67 - PubMed
  5. Biomaterials. 1996 Jul;17(13):1279-87 - PubMed
  6. Acta Biomater. 2009 Jul;5(6):2222-9 - PubMed
  7. Int J Oral Maxillofac Implants. 2009 Jan-Feb;24(1):38-46 - PubMed
  8. Histol Histopathol. 2001 Apr;16(2):603-11 - PubMed
  9. J Dent Res. 2005 May;84(5):407-13 - PubMed
  10. Clin Oral Implants Res. 2007 Dec;18(6):680-5 - PubMed
  11. Clin Implant Dent Relat Res. 2011 Mar;13(1):79-85 - PubMed
  12. J Biomed Mater Res. 2002 Nov;62(2):175-84 - PubMed
  13. J Biomed Mater Res B Appl Biomater. 2009 Aug;90(2):608-13 - PubMed
  14. Biomaterials. 2001 Jun;22(11):1241-51 - PubMed
  15. Calcif Tissue Int. 1983 Sep;35(6):755-61 - PubMed
  16. Clin Implant Dent Relat Res. 2002;4(2):78-87 - PubMed
  17. J Am Coll Nutr. 2009 Apr;28(2):131-41 - PubMed
  18. Clin Oral Implants Res. 2000 Dec;11(6):530-9 - PubMed
  19. J Mater Sci Mater Med. 2007 Feb;18(2):245-53 - PubMed
  20. Biomaterials. 2006 May;27(13):2682-91 - PubMed
  21. Clin Oral Implants Res. 2009 Oct;20(10):1146-55 - PubMed
  22. Biomaterials. 2005 Nov;26(33):6720-30 - PubMed
  23. Clin Implant Dent Relat Res. 2004;6(2):101-10 - PubMed
  24. J R Soc Interface. 2010 Jan 6;7(42):81-90 - PubMed
  25. J Biomed Mater Res A. 2009 Jun 15;89(4):942-50 - PubMed
  26. Int J Oral Maxillofac Implants. 2004 Sep-Oct;19(5):659-66 - PubMed
  27. Biomaterials. 2002 Feb;23(4):1269-79 - PubMed
  28. Int J Oral Maxillofac Implants. 2008 Jul-Aug;23(4):631-40 - PubMed
  29. Clin Implant Dent Relat Res. 2008 Mar;10(1):55-61 - PubMed
  30. Calcif Tissue Res. 1969;3(4):318-26 - PubMed
  31. J Dent Res. 2004 Jul;83(7):529-33 - PubMed
  32. J Biomed Mater Res. 1969 Mar;3(1):43-67 - PubMed
  33. J Biomed Mater Res. 2002;63(5):522-30 - PubMed
  34. Int J Prosthodont. 2006 Jul-Aug;19(4):319-28 - PubMed
  35. J Cell Sci. 1998 May;111 ( Pt 10):1385-93 - PubMed
  36. Clin Oral Implants Res. 1995 Mar;6(1):24-30 - PubMed
  37. BMC Struct Biol. 2003 Jul 7;3:6 - PubMed
  38. Langmuir. 2008 Aug 19;24(16):8402-4 - PubMed
  39. J Bone Miner Res. 1993 Dec;8 Suppl 2:S483-7 - PubMed
  40. J Biomater Sci Polym Ed. 2003;14(9):973-88 - PubMed
  41. Biomaterials. 2007 Aug;28(24):3469-77 - PubMed
  42. J Biol Chem. 2009 Sep 18;284(38):25879-88 - PubMed

Publication Types