Display options
Share it on

Open Biomed Eng J. 2013 Nov 29;7:133-46. doi: 10.2174/1874120701307010133. eCollection 2013.

Evaluation of the Fatigue Performance and Degradability of Resorbable PLDLLA-TMC Osteofixations.

The open biomedical engineering journal

Constantin Landes, Alexander Ballon, Shahram Ghanaati, Daniel Ebel, Dieter Ulrich, Uwe Spohn, Ute Heunemann, Robert Sader, Raimund Jaeger

Affiliations

  1. Oral, Craniomaxillofacial and Plastic Facial Surgery, The Center of Surgery, Goethe University Medical Centre, Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
  2. Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg, Germany.
  3. Fraunhofer Institute for Mechanics of Materials IWM, Biological and Biocompatible Materials - group, Fraunhofer-IWM, Walter-Hülse-Str. 1, 06120 Halle.

PMID: 24363786 PMCID: PMC3869107 DOI: 10.2174/1874120701307010133

Abstract

The fatigue performance of explanted in-situ degraded osteofixations/osteosyntheses, fabricated from poly (70L-lactide-co-24DL-lactide-6-trimethylane-carbonate or PLDLLA-TMC) copolymer was compared to that of virgin products. The fatigue test was performed on 21 explants retrieved from 12 women and 6 men; 16-46 years by a custom-designed three-point bend apparatus using a staircase method and a specified failure criterion (an increase of the deflection of the specimen > 1 mm) with run-out designated as "no failure" after 150,000 loading cycles. While all the virgin products showed run-out at 38N, all of the specimens fabricated from explants failed at this load level. For the explant specimens, although there was a trend of decreased failure load with increased in-situ time, this decrease was pronounced after 4 months in-situ, however, not yet statistically significant, while a 6-month in-situ explant had significantly less failure load. Three and four month in-situ explants had highly significant differences in failure load between measurements close and distant to the osteotomy line: p=0.0017 (the region of maximum load in-situ). In the virgin products, there were only traces of melt joining and cooling, left from a stage in the manufacturing process. For the implants retrieved after 4.5 months in-situ, the fracture surfaces showed signs of degradation of the implants, possibly caused by hydrolysis, and for those retrieved after 9 months in-situ, there were cracks and pores. Thus, the morphological results are consistent with those obtained in the fatigue test. The present results suggest that resorbable osteofixations fabricated from PLDLLA-TMC are stable enough to allow loading of the healing bone and degrade reliably.

Keywords: PLDLLA-TMC; PLLA; Polylactic acid; fatigue.; in-patient degradation; in-situ degradation; resorbable craniofacial implants; resorbable osteofixation; resorbable osteosyntheses; strength retention

References

  1. Orthopade. 1997 May;26(5):489-97 - PubMed
  2. J Orthop Res. 2008 Nov;26(11):1485-8 - PubMed
  3. Plast Reconstr Surg. 2003 May;111(6):1828-40 - PubMed
  4. J Craniofac Surg. 2000 Nov;11(6):575-85 - PubMed
  5. J Mater Sci Mater Med. 2008 Mar;19(3):1155-63 - PubMed
  6. Plast Reconstr Surg. 1992 Oct;90(4):568-73 - PubMed
  7. Aktuelle Traumatol. 1994 Apr;24(2):70-3 - PubMed
  8. Int J Oral Maxillofac Surg. 2005 Dec;34(8):859-70 - PubMed
  9. Int J Oral Maxillofac Surg. 2006 Feb;35(2):115-26 - PubMed
  10. J Oral Maxillofac Surg. 2007 May;65(5):924-30 - PubMed
  11. Biomaterials. 1987 Jul;8(4):311-4 - PubMed
  12. Biomaterials. 2000 Dec;21(24):2615-21 - PubMed
  13. Biomaterials. 1995 Nov;16(17):1353-8 - PubMed
  14. J Craniomaxillofac Surg. 2012 Dec;40(8):e408-14 - PubMed
  15. J Oral Maxillofac Surg. 1999 Jun;57(6):679-82 - PubMed
  16. Biomaterials. 1999 Apr;20(7):675-82 - PubMed
  17. J Craniofac Surg. 2000 May;11(3):239-43; discussion 244-5 - PubMed
  18. J Craniomaxillofac Surg. 1999 Feb;27(1):51-7 - PubMed
  19. Clin Mater. 1994;17(1):35-67 - PubMed
  20. J Craniomaxillofac Surg. 2012 Dec;40(8):807-11 - PubMed
  21. Plast Reconstr Surg. 2006 Jun;117(7):2347-60 - PubMed
  22. Clin Orthop Relat Res. 1986 Jun;(207):108-12 - PubMed
  23. Biomaterials. 1987 Jan;8(1):70-3 - PubMed
  24. Plast Reconstr Surg. 1997 Apr;99(4):976-9; discussion 980-1 - PubMed
  25. J Biomed Mater Res. 1989 Oct;23(10):1115-30 - PubMed
  26. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008 Oct;106(4):477-82 - PubMed
  27. J Oral Maxillofac Surg. 1998 May;56(5):604-14; discussion 614-5 - PubMed
  28. J Oral Maxillofac Surg. 2007 Nov;65(11):2148-58 - PubMed
  29. Chirurgie. 1992;118(10):596-600 - PubMed
  30. Mund Kiefer Gesichtschir. 2003 Sep;7(5):283-8 - PubMed
  31. J Oral Maxillofac Surg. 2007 Nov;65(11):2142-7 - PubMed
  32. J Craniofac Surg. 2008 May;19(3):748-56 - PubMed
  33. J Oral Maxillofac Surg. 2007 Jan;65(1):89-96 - PubMed
  34. J Orthop Sci. 2001;6(2):160-6 - PubMed
  35. J Biomed Mater Res B Appl Biomater. 2006 Feb;76(2):403-11 - PubMed
  36. Biomed Tech (Berl). 2003 Oct;48(10):262-8 - PubMed
  37. Biomaterials. 1997 Feb;18(3):257-66 - PubMed
  38. J Craniofac Surg. 1997 Mar;8(2):116-20 - PubMed
  39. Plast Reconstr Surg. 1997 Oct;100(5):1336-53 - PubMed

Publication Types