Display options
Share it on

HSS J. 2013 Oct;9(3):223-8. doi: 10.1007/s11420-013-9337-9. Epub 2013 Jul 26.

Computerized virtual surgery demonstrates where acetabular rim osteophytes most reduce range of motion following total hip arthroplasty.

HSS journal : the musculoskeletal journal of Hospital for Special Surgery

Sebastian Rodriguez-Elizalde, Alyssa M Yeager, Bheeshma Ravi, Joseph D Lipman, Eduardo A Salvati, Geoffrey H Westrich

Affiliations

  1. Department of Orthopaedic Surgery, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA.
  2. Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, 100 College Street, Toronto, ON M5G 1L5 Canada.
  3. Department of Biomechanics, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA.

PMID: 24426873 PMCID: PMC3772166 DOI: 10.1007/s11420-013-9337-9

Abstract

BACKGROUND: Acetabular osteophytes are common findings during total hip arthroplasty (THA).

PURPOSE: This study was designed to determine the extent to which osteophytes may limit range of motion (ROM) and in which locations impingement is likely to occur if osteophytes are not removed during surgery.

METHODS: Computer-aided design was used to compare ROM of a modern hip implant in four cadaver models with and without 10-mm acetabular rim osteophytes added. A clock face, with 12 o'clock at the superior pole of the right acetabulum, was used to map impingement.

RESULTS: The osteophyte model limited ROM in flexion (101° v. 113°, p = 0.03), 90° of flexion with internal rotation (16.7° v. 31.6°, p = 0.01), and external rotation (30.4° v. 49.5°, p = 0.01). Impingement occurred between 7 and 8 o'clock in external rotation and 1 and 2 o'clock in the other two motions.

CONCLUSIONS: Osteophytes in these positions have the greatest impact on ROM and should be removed during THA.

Keywords: acetabular osteophytes; computer-aided design; dislocation; range of motion; total hip arthroplasty

References

  1. J Arthroplasty. 1987;2(2):119-24 - PubMed
  2. J Bone Joint Surg Am. 1975 Oct;57(7):977-81 - PubMed
  3. Clin Orthop Relat Res. 1998 Oct;(355):152-62 - PubMed
  4. J Arthroplasty. 2002 Apr;17(3):282-8 - PubMed
  5. Clin Orthop Relat Res. 1975 Sep;(111):124-30 - PubMed
  6. J Bone Joint Surg Am. 2007 Aug;89(8):1832-42 - PubMed
  7. Arthritis Rheum. 2009 Jul 15;61(7):925-36 - PubMed
  8. J Bone Joint Surg Am. 2001 Nov;83(11):1622-9 - PubMed
  9. J Bone Joint Surg Am. 1978 Mar;60(2):217-20 - PubMed
  10. Clin Orthop Relat Res. 1983 Mar;(173):151-8 - PubMed
  11. J Am Acad Orthop Surg. 2004 Sep-Oct;12(5):314-21 - PubMed
  12. J Bone Joint Surg Am. 2004 Sep;86(9):1874-7 - PubMed
  13. J Arthroplasty. 1991 Jun;6(2):97-101 - PubMed
  14. J Bone Joint Surg Br. 1981;63-B(2):214-8 - PubMed
  15. Clin Orthop Relat Res. 1980 Sep;(151):169-78 - PubMed
  16. Clin Orthop Relat Res. 2004 Mar;(420):72-9 - PubMed
  17. J Bone Joint Surg Am. 1982 Dec;64(9):1295-306 - PubMed
  18. J Arthroplasty. 2010 Jun;25(4):624-34.e1-2 - PubMed
  19. Clin Orthop Relat Res. 1982 Jun;(166):284-91 - PubMed
  20. Eur J Radiol. 2007 Jul;63(1):29-35 - PubMed
  21. Ortop Traumatol Rehabil. 2010 Nov-Dec;12(6):479-92 - PubMed
  22. J Arthroplasty. 2007 Jun;22(4 Suppl 1):86-90 - PubMed
  23. Clin Orthop Relat Res. 2010 Aug;468(8):2143-51 - PubMed
  24. Clin Biomech (Bristol, Avon). 2007 Nov;22(9):1004-12 - PubMed
  25. Am J Orthop (Belle Mead NJ). 2003 Aug;32(8):377-82 - PubMed
  26. J Arthroplasty. 2001 Dec;16(8 Suppl 1):8-12 - PubMed
  27. J Bone Joint Surg Br. 1996 Mar;78(2):206-9 - PubMed
  28. J Bone Joint Surg Am. 1997 Apr;79(4):485-94 - PubMed

Publication Types