Display options
Share it on

OMICS. 2014 Jan;18(1):10-4. doi: 10.1089/omi.2013.0149.

Toward more transparent and reproducible omics studies through a common metadata checklist and data publications.

Omics : a journal of integrative biology

Eugene Kolker, Vural Özdemir, Lennart Martens, William Hancock, Gordon Anderson, Nathaniel Anderson, Sukru Aynacioglu, Ancha Baranova, Shawn R Campagna, Rui Chen, John Choiniere, Stephen P Dearth, Wu-Chun Feng, Lynnette Ferguson, Geoffrey Fox, Dmitrij Frishman, Robert Grossman, Allison Heath, Roger Higdon, Mara H Hutz, Imre Janko, Lihua Jiang, Sanjay Joshi, Alexander Kel, Joseph W Kemnitz, Isaac S Kohane, Natali Kolker, Doron Lancet, Elaine Lee, Weizhong Li, Andrey Lisitsa, Adrian Llerena, Courtney Macnealy-Koch, Jean-Claude Marshall, Paola Masuzzo, Amanda May, George Mias, Matthew Monroe, Elizabeth Montague, Sean Mooney, Alexey Nesvizhskii, Santosh Noronha, Gilbert Omenn, Harsha Rajasimha, Preveen Ramamoorthy, Jerry Sheehan, Larry Smarr, Charles V Smith, Todd Smith, Michael Snyder, Srikanth Rapole, Sanjeeva Srivastava, Larissa Stanberry, Elizabeth Stewart, Stefano Toppo, Peter Uetz, Kenneth Verheggen, Brynn H Voy, Louise Warnich, Steven W Wilhelm, Gregory Yandl

Affiliations

  1. 1 Bioinformatics and High-Throughput Analysis Laboratory, Seattle Children's Research Institute , Seattle, Washington.

PMID: 24456465 PMCID: PMC3903324 DOI: 10.1089/omi.2013.0149

Abstract

Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of new post-genomics technologies, omics studies are becoming increasingly prevalent; yet the full impact of these studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research. These essential steps require consistent generation, capture, and distribution of metadata. To ensure transparency, facilitate data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a simple common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards already in use by the life sciences community. The checklist will serve as a common denominator to guide experimental design, capture important parameters, and be used as a standard format for stand-alone data publications. The omics metadata checklist and data publications will create efficient linkages between omics data and knowledge-based life sciences innovation and, importantly, allow for appropriate attribution to data generators and infrastructure science builders in the post-genomics era. We ask that the life sciences community test the proposed omics metadata checklist and data publications and provide feedback for their use and improvement.

References

  1. Quant Biol. 2013 Mar;1(1):71-90 - PubMed
  2. Nucleic Acids Res. 2012 Jan;40(Database issue):D1093-9 - PubMed
  3. J Am Med Inform Assoc. 2014 Mar-Apr;21(2):200-3 - PubMed
  4. Nat Biotechnol. 2011 May;29(5):415-20 - PubMed
  5. Nature. 2013 Jun 13;498(7453):170 - PubMed
  6. Biotechnol J. 2012 Aug;7(8):980-91 - PubMed
  7. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 - PubMed
  8. J Proteome Res. 2014 Jan 3;13(1):107-13 - PubMed
  9. Nat Biotechnol. 2007 Aug;25(8):887-93 - PubMed
  10. OMICS. 2012 Mar;16(3):138-47 - PubMed
  11. OMICS. 2014 Jan;18(1):81-5 - PubMed
  12. Cell. 2012 Mar 16;148(6):1293-307 - PubMed
  13. Nat Genet. 2011 Jan;43(1):1 - PubMed
  14. Nucleic Acids Res. 2012 Jan;40(Database issue):D57-63 - PubMed
  15. Nat Biotechnol. 2008 Aug;26(8):889-96 - PubMed
  16. Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9 - PubMed
  17. Stand Genomic Sci. 2010 Dec 25;3(3):259-66 - PubMed
  18. Nucleic Acids Res. 2013 Jan;41(Database issue):D987-90 - PubMed
  19. Nat Genet. 2001 Dec;29(4):365-71 - PubMed
  20. Big Data. 2013 Sep;1(3):187-90 - PubMed
  21. Science. 2009 Oct 9;326(5950):234-6 - PubMed

MeSH terms

Publication Types

Grant support