Display options
Share it on

Front Behav Neurosci. 2014 Jan 28;8:11. doi: 10.3389/fnbeh.2014.00011. eCollection 2014.

Composition of agarose substrate affects behavioral output of Drosophila larvae.

Frontiers in behavioral neuroscience

Anthi A Apostolopoulou, Fabian Hersperger, Lorena Mazija, Annekathrin Widmann, Alexander Wüst, Andreas S Thum

Affiliations

  1. Department of Biology, University of Konstanz Konstanz, Germany.

PMID: 24478658 PMCID: PMC3904111 DOI: 10.3389/fnbeh.2014.00011

Abstract

In the last decade the Drosophila larva has evolved into a simple model organism offering the opportunity to integrate molecular genetics with systems neuroscience. This led to a detailed understanding of the neuronal networks for a number of sensory functions and behaviors including olfaction, vision, gustation and learning and memory. Typically, behavioral assays in use exploit simple Petri dish setups with either agarose or agar as a substrate. However, neither the quality nor the concentration of the substrate is generally standardized across these experiments and there is no data available on how larval behavior is affected by such different substrates. Here, we have investigated the effects of different agarose concentrations on several larval behaviors. We demonstrate that agarose concentration is an important parameter, which affects all behaviors tested: preference, feeding, learning and locomotion. Larvae can discriminate between different agarose concentrations, they feed differently on them, they can learn to associate an agarose concentration with an odor stimulus and change locomotion on a substrate of higher agarose concentration. Additionally, we have investigated the effect of agarose concentration on three quinine based behaviors: preference, feeding and learning. We show that in all cases examined the behavioral output changes in an agarose concentration-dependent manner. Our results suggest that comparisons between experiments performed on substrates differing in agarose concentration should be done with caution. It should be taken into consideration that the agarose concentration can affect the behavioral output and thereby the experimental outcomes per se potentially due to the initiation of an escape response or changes in foraging behavior on more rigid substrates.

Keywords: Drosophila larva; agarose; bitter; choice behavior; feeding; gustation; learning and memory

References

  1. J Biosci. 2009 Oct;34(4):621-31 - PubMed
  2. Nature. 2012 Dec 20;492(7429):433-7 - PubMed
  3. J Comp Neurol. 2007 Jun 10;502(5):834-47 - PubMed
  4. Cell. 2003 Apr 18;113(2):261-73 - PubMed
  5. Development. 2002 Jun;129(12):2867-78 - PubMed
  6. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Mar;191(3):265-79 - PubMed
  7. Curr Biol. 2007 Dec 18;17(24):2105-2116 - PubMed
  8. PLoS One. 2013 Aug 20;8(8):e71706 - PubMed
  9. PLoS One. 2012;7(10):e47518 - PubMed
  10. Behav Neurosci. 2011 Dec;125(6):921-9 - PubMed
  11. J Neurosci. 2010 Mar 24;30(12):4261-72 - PubMed
  12. Curr Biol. 2005 Jun 7;15(11):982-92 - PubMed
  13. Chem Senses. 2010 May;35(4):335-46 - PubMed
  14. J Neurosci. 2003 Nov 19;23(33):10495-502 - PubMed
  15. Learn Mem. 2005 May-Jun;12(3):224-31 - PubMed
  16. Chem Senses. 2008 Jul;33(6):563-73 - PubMed
  17. PLoS One. 2009 Jun 12;4(6):e5897 - PubMed
  18. J Exp Biol. 2004 Jan;207(Pt 1):179-88 - PubMed
  19. Nature. 2013 Jan 10;493(7431):221-5 - PubMed
  20. Chem Senses. 2008 Oct;33(8):685-92 - PubMed
  21. Nat Methods. 2011 Jun 05;8(7):592-8 - PubMed
  22. J Neurosci. 2010 Aug 11;30(32):10655-66 - PubMed
  23. Chem Senses. 2012 Oct;37(8):711-21 - PubMed
  24. Curr Biol. 2010 Aug 24;20(16):1445-51 - PubMed
  25. Results Probl Cell Differ. 2009;47:139-85 - PubMed
  26. Curr Biol. 2005 Nov 8;15(21):1953-60 - PubMed
  27. Science. 2011 Mar 11;331(6022):1333-6 - PubMed
  28. Curr Biol. 2006 Sep 5;16(17):1741-7 - PubMed
  29. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):834-9 - PubMed
  30. J Vis Exp. 2013 Feb 18;(72): - PubMed
  31. Learn Mem. 2011 Apr 25;18(5):332-44 - PubMed
  32. Proc Biol Sci. 2006 Dec 7;273(1604):2965-8 - PubMed
  33. J Neurosci. 2009 Jan 21;29(3):852-62 - PubMed
  34. J Comp Neurol. 2002 Apr 15;445(4):374-87 - PubMed
  35. J Neurosci. 2011 Oct 26;31(43):15300-9 - PubMed
  36. Chem Senses. 2007 Jan;32(1):65-89 - PubMed
  37. Genetics. 1989 Sep;123(1):157-63 - PubMed
  38. Front Neural Circuits. 2009 Jul 01;3:5 - PubMed
  39. Learn Mem. 2011 Sep 26;18(10):639-53 - PubMed
  40. Neuron. 2003 Jul 3;39(1):147-61 - PubMed
  41. Curr Biol. 2010 Mar 9;20(5):429-34 - PubMed
  42. Nat Neurosci. 2005 Oct;8(10):1350-5 - PubMed
  43. J Comp Neurol. 2012 Nov 1;520(16):3764-85 - PubMed
  44. J Neurosci. 2012 Sep 5;32(36):12460-71 - PubMed
  45. Science. 1979 Oct 5;206(4414):93-6 - PubMed
  46. Curr Biol. 2005 Dec 6;15(23):2086-96 - PubMed
  47. PLoS One. 2012;7(7):e40525 - PubMed
  48. Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13289-94 - PubMed
  49. Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13612-7 - PubMed
  50. J Neurosci. 2011 Apr 27;31(17):6527-34 - PubMed
  51. Behav Genet. 2012 Jan;42(1):151-61 - PubMed
  52. Neuroscience. 2007 Aug 24;148(2):371-4 - PubMed
  53. Learn Mem. 2003 May-Jun;10(3):217-25 - PubMed
  54. Nature. 2012 Aug 23;488(7412):512-6 - PubMed
  55. PLoS Genet. 2012;8(7):e1002768 - PubMed

Publication Types