Display options
Share it on

Sensors (Basel). 2014 Jan 29;14(2):2350-61. doi: 10.3390/s140202350.

Influence of conductivity and dielectric constant of water-dioxane mixtures on the electrical response of SiNW-based FETs.

Sensors (Basel, Switzerland)

Marleen Mescher, Aldo G M Brinkman, Duco Bosma, Johan H Klootwijk, Ernst J R Sudhölter, Louis C P M de Smet

Affiliations

  1. Chemical Engineering, Delft University of Technology, 2628 BL Delft, The Netherlands. [email protected].
  2. Chemical Engineering, Delft University of Technology, 2628 BL Delft, The Netherlands. [email protected].
  3. Chemical Engineering, Delft University of Technology, 2628 BL Delft, The Netherlands. [email protected].
  4. Philips Research Laboratories, 5656 AE Eindhoven, The Netherlands. [email protected].
  5. Chemical Engineering, Delft University of Technology, 2628 BL Delft, The Netherlands. [email protected].
  6. Chemical Engineering, Delft University of Technology, 2628 BL Delft, The Netherlands. [email protected].

PMID: 24481233 PMCID: PMC3958210 DOI: 10.3390/s140202350

Abstract

In this study, we report on the electrical response of top-down, p-type silicon nanowire field-effect transistors exposed to water and mixtures of water and dioxane. First, the capacitive coupling of the back gate and the liquid gate via an Ag/AgCl electrode were compared in water. It was found that for liquid gating smaller potentials are needed to obtain similar responses of the nanowire compared to back gating. In the case of back gating, the applied potential couples through the buried oxide layer, indicating that the associated capacitance dominates all other capacitances involved during this mode of operation. Next, the devices were exposed to mixtures of water and dioxane to study the effect of these mixtures on the device characteristics, including the threshold voltage (V(T)). The V(T) dependency on the mixture composition was found to be related to the decreased dissociation of the surface silanol groups and the conductivity of the mixture used. This latter was confirmed by experiments with constant conductivity and varying water-dioxane mixtures.

References

  1. Anal Chem. 2011 Dec 15;83(24):9546-51 - PubMed
  2. ACS Appl Mater Interfaces. 2013 Mar;5(6):2289-99 - PubMed
  3. Nano Lett. 2008 May;8(5):1281-5 - PubMed
  4. ACS Nano. 2012 Jan 24;6(1):335-45 - PubMed
  5. ACS Appl Mater Interfaces. 2013 Jun 26;5(12):5748-56 - PubMed
  6. ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11172-83 - PubMed
  7. Nanotechnology. 2011 Jul 22;22(29):295502 - PubMed
  8. ACS Appl Mater Interfaces. 2010 Dec;2(12):3422-8 - PubMed
  9. J Nanosci Nanotechnol. 2013 Aug;13(8):5649-53 - PubMed
  10. Nano Lett. 2011 Jun 8;11(6):2334-41 - PubMed
  11. Nat Mater. 2007 May;6(5):379-84 - PubMed
  12. Angew Chem Int Ed Engl. 2010 Sep 10;49(38):6830-5 - PubMed
  13. ACS Appl Mater Interfaces. 2012 May;4(5):2604-17 - PubMed
  14. J Am Chem Soc. 2006 Dec 20;128(50):16323-31 - PubMed
  15. Science. 2001 Aug 17;293(5533):1289-92 - PubMed
  16. Nature. 2007 Feb 1;445(7127):519-22 - PubMed
  17. Small. 2009 Dec;5(23):2761-9 - PubMed
  18. Lab Chip. 2013 Apr 7;13(7):1431-6 - PubMed
  19. Langmuir. 2012 Jun 26;28(25):9899-905 - PubMed
  20. Adv Heterocycl Chem. 1965;4:43-73 - PubMed
  21. Nano Lett. 2010 Feb 10;10(2):547-52 - PubMed
  22. Nano Lett. 2007 Nov;7(11):3405-9 - PubMed
  23. Anal Chim Acta. 2012 Oct 24;749:1-15 - PubMed
  24. Small. 2010 Aug 16;6(16):1705-22 - PubMed
  25. J Am Chem Soc. 2011 Sep 7;133(35):13886-9 - PubMed
  26. ACS Nano. 2011 Jul 26;5(7):5620-6 - PubMed
  27. Lab Chip. 2007 Jan;7(1):19-23 - PubMed

Publication Types