Display options
Share it on

J Biol Eng. 2014 Feb 02;8(1):6. doi: 10.1186/1754-1611-8-6.

In silico design and in vivo implementation of yeast gene Boolean gates.

Journal of biological engineering

Mario A Marchisio

Affiliations

  1. Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland. [email protected].

PMID: 24485181 PMCID: PMC3926364 DOI: 10.1186/1754-1611-8-6

Abstract

In our previous computational work, we showed that gene digital circuits can be automatically designed in an electronic fashion. This demands, first, a conversion of the truth table into Boolean formulas with the Karnaugh map method and, then, the translation of the Boolean formulas into circuit schemes organized into layers of Boolean gates and Pools of signal carriers. In our framework, gene digital circuits that take up to three different input signals (chemicals) arise from the composition of three kinds of basic Boolean gates, namely YES, NOT, and AND. Here we present a library of YES, NOT, and AND gates realized via plasmidic DNA integration into the yeast genome. Boolean behavior is reproduced via the transcriptional control of a synthetic bipartite promoter that contains sequences of the yeast VPH1 and minimal CYC1 promoters together with operator binding sites for bacterial (i.e. orthogonal) repressor proteins. Moreover, model-driven considerations permitted us to pinpoint a strategy for re-designing gates when a better digital performance is required. Our library of well-characterized Boolean gates is the basis for the assembly of more complex gene digital circuits. As a proof of concepts, we engineered two 2-input OR gates, designed by our software, by combining YES and NOT gates present in our library.

References

  1. Curr Opin Genet Dev. 2005 Apr;15(2):116-24 - PubMed
  2. Mol Syst Biol. 2007;3:133 - PubMed
  3. J Biol Eng. 2010 Dec 17;4:16 - PubMed
  4. Nat Rev Genet. 2012 Jun 12;13(7):455-68 - PubMed
  5. Biotechnol Bioeng. 2004 Aug 20;87(4):478-84 - PubMed
  6. Gene. 1993 Sep 6;131(1):129-34 - PubMed
  7. PLoS Comput Biol. 2011 Feb;7(2):e1001083 - PubMed
  8. Mol Cell Biol. 1991 Feb;11(2):666-76 - PubMed
  9. Nat Methods. 2009 May;6(5):343-5 - PubMed
  10. Annu Rev Microbiol. 1994;48:345-69 - PubMed
  11. Curr Genet. 1992 Apr;21(4-5):345-9 - PubMed
  12. Yeast. 2004 Jun;21(8):661-70 - PubMed
  13. PLoS One. 2011 Feb 24;6(2):e17005 - PubMed
  14. Science. 2008 Oct 17;322(5900):456-60 - PubMed
  15. FEBS Lett. 2012 Jul 16;586(15):2112-21 - PubMed
  16. Mol Syst Biol. 2007;3:127 - PubMed
  17. Nucleic Acids Res. 2005 May 19;33(9):2838-51 - PubMed
  18. Mol Cell Biol. 1986 Dec;6(12):4763-6 - PubMed
  19. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7410-4 - PubMed
  20. Science. 2011 Sep 2;333(6047):1307-11 - PubMed
  21. Int J Biochem Cell Biol. 2011 Mar;43(3):310-9 - PubMed
  22. Nat Biotechnol. 2007 Jul;25(7):795-801 - PubMed
  23. FEBS Lett. 2008 Apr 9;582(8):1237-44 - PubMed
  24. Nature. 2012 Jul 5;487(7405):123-7 - PubMed
  25. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12726-31 - PubMed
  26. Nat Methods. 2007 Sep;4(9):741-6 - PubMed
  27. Bioinformatics. 2008 Sep 1;24(17):1903-10 - PubMed
  28. Nature. 2011 Jan 13;469(7329):212-5 - PubMed
  29. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4500-4 - PubMed
  30. Nature. 2011 Jan 13;469(7329):207-11 - PubMed
  31. BMC Syst Biol. 2013 May 27;7:42 - PubMed
  32. Nucleic Acids Res. 2012 Aug;40(15):7584-95 - PubMed
  33. Nucleic Acids Res. 2009 Oct;37(18):e120 - PubMed
  34. Genetics. 1989 May;122(1):19-27 - PubMed
  35. Yeast. 1998 Jan 30;14(2):115-32 - PubMed
  36. EMBO J. 1994 Jul 15;13(14):3348-55 - PubMed
  37. J Bacteriol. 1999 May;181(10):2987-91 - PubMed

Publication Types