Display options
Share it on

Alzheimers Res Ther. 2014 Feb 27;6(1):12. doi: 10.1186/alzrt241. eCollection 2014.

Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition.

Alzheimer's research & therapy

Maj-Linda Selenica, Leif Benner, Steven B Housley, Barbara Manchec, Daniel C Lee, Kevin R Nash, Jay Kalin, Joel A Bergman, Alan Kozikowski, Marcia N Gordon, Dave Morgan

Affiliations

  1. Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA ; College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, FL 33612, USA.
  2. Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA.
  3. Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA ; College of Medicine, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA.
  4. Department of Pharmacology and Molecular Science, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
  5. Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.

PMID: 24576665 PMCID: PMC3978441 DOI: 10.1186/alzrt241

Abstract

INTRODUCTION: Tau pathology is associated with a number of age-related neurodegenerative disorders. Few treatments have been demonstrated to diminish the impact of tau pathology in mouse models and none are yet effective in humans. Histone deacetylase 6 (HDAC6) is an enzyme that removes acetyl groups from cytoplasmic proteins, rather than nuclear histones. Its substrates include tubulin, heat shock protein 90 and cortactin. Tubastatin A is a selective inhibitor of HDAC6. Modification of tau pathology by specific inhibition of HDAC6 presents a potential therapeutic approach in tauopathy.

METHODS: We treated rTg4510 mouse models of tau deposition and non-transgenic mice with tubastatin (25 mg/kg) or saline (0.9%) from 5 to 7 months of age. Cognitive behavior analysis, histology and biochemical analysis were applied to access the effect of tubastatin on memory, tau pathology and neurodegeneration (hippocampal volume).

RESULTS: We present data showing that tubastatin restored memory function in rTg4510 mice and reversed a hyperactivity phenotype. We further found that tubastatin reduced the levels of total tau, both histologically and by western analysis. Reduction in total tau levels was positively correlated with memory improvement in these mice. However, there was no impact on phosphorylated forms of tau, either by histology or western analysis, nor was there an impact on silver positive inclusions histologically.

CONCLUSION: Potential mechanisms by which HDAC6 inhibitors might benefit the rTg4510 mouse include stabilization of microtubules secondary to increased tubulin acetylation, increased degradation of tau secondary to increased acetylation of HSP90 or both. These data support the use of HDAC6 inhibitors as potential therapeutic agents against tau pathology.

References

  1. J Neuropathol Exp Neurol. 2012 May;71(5):362-81 - PubMed
  2. Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006247 - PubMed
  3. PLoS One. 2012;7(8):e42983 - PubMed
  4. Surg Today. 2010 Sep;40(9):809-15 - PubMed
  5. Neuropsychopharmacology. 2009 Jun;34(7):1721-32 - PubMed
  6. Biochem Pharmacol. 2012 Sep 15;84(6):756-65 - PubMed
  7. Mol Neurodegener. 2013 Jan 29;8:7 - PubMed
  8. Neuron. 2012 Feb 23;73(4):685-97 - PubMed
  9. Neuroreport. 2004 Jan 19;15(1):73-7 - PubMed
  10. Nature. 2007 May 10;447(7141):178-82 - PubMed
  11. Hum Mol Genet. 2012 Jul 1;21(13):2936-45 - PubMed
  12. Science. 2005 Jul 15;309(5733):476-81 - PubMed
  13. Arch Neurol. 2008 Apr;65(4):460-4 - PubMed
  14. EMBO J. 2002 Dec 16;21(24):6820-31 - PubMed
  15. J Neurochem. 2008 Sep;106(5):2119-30 - PubMed
  16. Am J Pathol. 2009 Jan;174(1):228-38 - PubMed
  17. Nat Rev Neurosci. 2013 Feb;14(2):97-111 - PubMed
  18. Acta Neuropathol. 1991;82(4):239-59 - PubMed
  19. J Am Chem Soc. 2010 Aug 11;132(31):10842-6 - PubMed
  20. Behav Genet. 1999 May;29(3):177-85 - PubMed
  21. Psychol Rev. 1975 Sep;82(5):359-85 - PubMed
  22. EMBO Mol Med. 2013 Jan;5(1):52-63 - PubMed
  23. Pharmacol Ther. 2012 Oct;136(1):8-22 - PubMed
  24. JAMA. 2011 Nov 9;306(18):2001-10 - PubMed
  25. PLoS One. 2012;7(2):e31302 - PubMed
  26. J Neurosci. 2011 Oct 5;31(40):14436-49 - PubMed
  27. Mol Neurodegener. 2010 Nov 01;5:45 - PubMed
  28. J Mol Neurosci. 2001 Oct;17(2):101-18 - PubMed
  29. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4604-9 - PubMed
  30. Nat Med. 1998 Jan;4(1):97-100 - PubMed
  31. Nature. 2000 Dec 21-28;408(6815):982-5 - PubMed
  32. Brain Res. 1998 Oct 12;808(1):110-2 - PubMed
  33. J Neurosci. 2007 Mar 21;27(12):3090-7 - PubMed
  34. Nature. 2009 May 7;459(7243):55-60 - PubMed
  35. Nature. 2012 Feb 29;483(7388):222-6 - PubMed
  36. Nat Protoc. 2006;1(4):1671-9 - PubMed
  37. Neuropsychopharmacology. 2010 Mar;35(4):870-80 - PubMed
  38. J Neuroinflammation. 2013 Jul 17;10:86 - PubMed
  39. J Neuroinflammation. 2010 Sep 16;7:56 - PubMed
  40. Exp Neurol. 2002 Feb;173(2):183-95 - PubMed
  41. J Alzheimers Dis. 2009;18(1):131-9 - PubMed
  42. Neurobiol Aging. 2001 May-Jun;22(3):377-85 - PubMed
  43. J Biol Chem. 2013 Aug 2;288(31):22516-26 - PubMed
  44. J Neurochem. 2009 Jun;109(6):1756-66 - PubMed
  45. Nat Med. 2011 Jul 24;17(8):968-74 - PubMed
  46. Nature. 2002 May 23;417(6887):455-8 - PubMed
  47. Front Biosci (Elite Ed). 2011 Jun 01;3:1375-84 - PubMed

Publication Types