Display options
Share it on

Front Syst Neurosci. 2014 Feb 21;8:26. doi: 10.3389/fnsys.2014.00026. eCollection 2014.

Cochlear neuropathy and the coding of supra-threshold sound.

Frontiers in systems neuroscience

Hari M Bharadwaj, Sarah Verhulst, Luke Shaheen, M Charles Liberman, Barbara G Shinn-Cunningham

Affiliations

  1. Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA ; Department of Biomedical Engineering, Boston University Boston, MA, USA.
  2. Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA ; Department of Otology and Laryngology, Harvard Medical School Boston, MA, USA.
  3. Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Speech and Hearing Bioscience and Technology Program Cambridge, MA, USA.
  4. Department of Otology and Laryngology, Harvard Medical School Boston, MA, USA ; Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Speech and Hearing Bioscience and Technology Program Cambridge, MA, USA.

PMID: 24600357 PMCID: PMC3930880 DOI: 10.3389/fnsys.2014.00026

Abstract

Many listeners with hearing thresholds within the clinically normal range nonetheless complain of difficulty hearing in everyday settings and understanding speech in noise. Converging evidence from human and animal studies points to one potential source of such difficulties: differences in the fidelity with which supra-threshold sound is encoded in the early portions of the auditory pathway. Measures of auditory subcortical steady-state responses (SSSRs) in humans and animals support the idea that the temporal precision of the early auditory representation can be poor even when hearing thresholds are normal. In humans with normal hearing thresholds (NHTs), paradigms that require listeners to make use of the detailed spectro-temporal structure of supra-threshold sound, such as selective attention and discrimination of frequency modulation (FM), reveal individual differences that correlate with subcortical temporal coding precision. Animal studies show that noise exposure and aging can cause a loss of a large percentage of auditory nerve fibers (ANFs) without any significant change in measured audiograms. Here, we argue that cochlear neuropathy may reduce encoding precision of supra-threshold sound, and that this manifests both behaviorally and in SSSRs in humans. Furthermore, recent studies suggest that noise-induced neuropathy may be selective for higher-threshold, lower-spontaneous-rate nerve fibers. Based on our hypothesis, we suggest some approaches that may yield particularly sensitive, objective measures of supra-threshold coding deficits that arise due to neuropathy. Finally, we comment on the potential clinical significance of these ideas and identify areas for future investigation.

Keywords: aging; auditory nerve; auditory steady-state response; frequency-following response; individual differences; noise-induced hearing loss; temporal coding; temporary threshold shift

References

  1. J Acoust Soc Am. 2011 Feb;129(2):817-27 - PubMed
  2. J Neurophysiol. 1996 Oct;76(4):2799-803 - PubMed
  3. Hear Res. 1980 Jul;3(1):45-63 - PubMed
  4. J Acoust Soc Am. 2011 Sep;130(3):1475-87 - PubMed
  5. Curr Biol. 2012 Aug 7;22(15):1417-22 - PubMed
  6. Brain Topogr. 2002 Winter;15(2):69-86 - PubMed
  7. J Acoust Soc Am. 2006 Sep;120(3):1446-66 - PubMed
  8. Acta Otolaryngol. 1993 May;113(3):330-4 - PubMed
  9. J Neurophysiol. 2013 Aug;110(3):577-86 - PubMed
  10. Hear Res. 1992 Feb;58(1):70-8 - PubMed
  11. J Acoust Soc Am. 1992 Mar;91(3):1648-61 - PubMed
  12. J Acoust Soc Am. 2013 Sep;134(3):2197-204 - PubMed
  13. Hear Res. 1990 Mar;44(2-3):99-122 - PubMed
  14. J Acoust Soc Am. 2004 Dec;116(6):3581-93 - PubMed
  15. J Acoust Soc Am. 2003 Feb;113(2):936-50 - PubMed
  16. J Neurosci Methods. 2007 Jan 30;159(2):337-45 - PubMed
  17. Hear Res. 2013 Aug;302:113-20 - PubMed
  18. J Neurosci. 1985 Dec;5(12):3261-9 - PubMed
  19. J Neurophysiol. 1984 Jun;51(6):1326-44 - PubMed
  20. J Acoust Soc Am. 1976 Mar;59(3):640-54 - PubMed
  21. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11773-9 - PubMed
  22. J Acoust Soc Am. 1987 May;81(5):1528-41 - PubMed
  23. Ear Hear. 2010 Dec;31(6):755-60 - PubMed
  24. Ear Hear. 1984 Mar-Apr;5(2):105-13 - PubMed
  25. J Am Acad Audiol. 2006 Sep;17(8):582-97 - PubMed
  26. J Acoust Soc Am. 1982 Jul;72(1):102-7 - PubMed
  27. J Neurophysiol. 2000 Jul;84(1):255-73 - PubMed
  28. J Acoust Soc Am. 2012 Oct;132(4):2524-35 - PubMed
  29. J Assoc Res Otolaryngol. 2003 Dec;4(4):541-54 - PubMed
  30. J Comp Neurol. 1991 Nov 8;313(2):240-58 - PubMed
  31. J Speech Lang Hear Res. 2007 Aug;50(4):857-64 - PubMed
  32. Front Biosci. 2000 Jan 01;5:D202-12 - PubMed
  33. Laryngoscope. 1983 May;93(5):599-614 - PubMed
  34. Acta Otorhinolaryngol Belg. 2003;57(4):291-9 - PubMed
  35. J Acoust Soc Am. 2002 Sep;112(3 Pt 1):1026-36 - PubMed
  36. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2643-7 - PubMed
  37. Hear Res. 1986;23(2):123-33 - PubMed
  38. J Acoust Soc Am. 2008 Dec;124(6):3841-9 - PubMed
  39. Electroencephalogr Clin Neurophysiol. 1977 May;42(5):656-64 - PubMed
  40. Electroencephalogr Clin Neurophysiol. 1976 Jan;40(1):25-32 - PubMed
  41. J Acoust Soc Am. 2002 Aug;112(2):590-9 - PubMed
  42. J Neurosci. 2009 Nov 11;29(45):14077-85 - PubMed
  43. Acta Otolaryngol Suppl. 1994;511:28-33 - PubMed
  44. J Assoc Res Otolaryngol. 2011 Dec;12(6):711-7 - PubMed
  45. Hear Res. 2008 Nov;245(1-2):35-47 - PubMed
  46. Hear Res. 2012 Dec;294(1-2):95-103 - PubMed
  47. J Neurophysiol. 1994 Mar;71(3):1022-36 - PubMed
  48. J Neurophysiol. 2006 Nov;96(5):2327-41 - PubMed
  49. J Acoust Soc Am. 2009 May;125(5):3328-45 - PubMed
  50. J Neurosci. 2013 Aug 21;33(34):13686-94 - PubMed
  51. J Acoust Soc Am. 1998 Jun;103(6):3431-44 - PubMed
  52. J Neurosci. 2011 Jan 19;31(3):801-8 - PubMed
  53. Neuron. 2009 Jan 29;61(2):317-29 - PubMed
  54. J Acoust Soc Am. 2001 Oct;110(4):2085-95 - PubMed
  55. Trends Neurosci. 2011 Mar;34(3):114-23 - PubMed
  56. J Acoust Soc Am. 2010 Sep;128(3):1235-44 - PubMed
  57. J Acoust Soc Am. 2000 Mar;107(3):1615-26 - PubMed
  58. J Neurophysiol. 2005 Jan;93(1):557-69 - PubMed
  59. Science. 1970 Mar 13;167(3924):1517-8 - PubMed
  60. Int J Audiol. 2011 Oct;50(10):708-16 - PubMed
  61. Ear Hear. 1996 Apr;17(2):81-96 - PubMed
  62. J Acoust Soc Am. 2006 Aug;120(2):901-14 - PubMed
  63. J Acoust Soc Am. 2014 Jan;135(1):283-6 - PubMed
  64. J Acoust Soc Am. 1980 Oct;68(4):1115-22 - PubMed
  65. Trends Amplif. 2008 Dec;12(4):283-99 - PubMed
  66. Hear Res. 1988 Aug;34(3):267-74 - PubMed
  67. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3318-23 - PubMed
  68. J Acoust Soc Am. 2004 Oct;116(4 Pt 1):2173-86 - PubMed
  69. J Acoust Soc Am. 2002 Jan;111(1 Pt 1):409-16 - PubMed
  70. J Assoc Res Otolaryngol. 2010 Sep;11(3):343-65 - PubMed
  71. J Comp Neurol. 1990 Nov 15;301(3):443-60 - PubMed
  72. J Acoust Soc Am. 2009 Jan;125(1):27-30 - PubMed
  73. J Neurosci. 2013 Mar 27;33(13):5542-52 - PubMed
  74. J Acoust Soc Am. 1986 Feb;79(2):426-42 - PubMed
  75. J Acoust Soc Am. 2012 Aug;132(2):927-43 - PubMed
  76. J Neurosci. 2010 Jun 2;30(22):7587-97 - PubMed
  77. J Assoc Res Otolaryngol. 2011 Jun;12(3):395-405 - PubMed
  78. J Acoust Soc Am. 2009 Nov;126(5):2390-412 - PubMed
  79. J Acoust Soc Am. 2003 Apr;113(4 Pt 1):2084-94 - PubMed
  80. Physiol Rev. 2004 Apr;84(2):541-77 - PubMed
  81. Psychophysiology. 2010 Mar 1;47(2):236-46 - PubMed
  82. J Acoust Soc Am. 1997 Mar;101(3):1671-80 - PubMed
  83. Hear Res. 1986;21(2):179-92 - PubMed
  84. Cell Calcium. 2010 Feb;47(2):122-9 - PubMed
  85. Clin Neurophysiol. 2014 Sep;125(9):1878-88 - PubMed
  86. J Assoc Res Otolaryngol. 2011 Dec;12(6):767-82 - PubMed
  87. J Acoust Soc Am. 1999 Feb;105(2 Pt 1):782-98 - PubMed
  88. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15516-21 - PubMed
  89. Trends Cogn Sci. 2008 May;12(5):182-6 - PubMed
  90. Electroencephalogr Clin Neurophysiol. 1975 Nov;39(5):465-72 - PubMed
  91. Hear Res. 1990 Aug 1;47(1-2):103-38 - PubMed
  92. J Comp Neurol. 1988 May 1;271(1):130-42 - PubMed
  93. Hum Brain Mapp. 1999;8(4):194-208 - PubMed
  94. J Acoust Soc Am. 1978 Feb;63(2):442-55 - PubMed
  95. J Acoust Soc Am. 2003 Sep;114(3):1499-507 - PubMed
  96. J Am Acad Audiol. 2002 Apr;13(4):188-204 - PubMed
  97. J Assoc Res Otolaryngol. 2011 Oct;12(5):605-16 - PubMed
  98. Neuroscience. 2007 Nov 9;149(3):673-84 - PubMed
  99. Nat Neurosci. 2012 Oct;15(10):1362-4 - PubMed
  100. Trends Cogn Sci. 2004 Oct;8(10):465-71 - PubMed
  101. Front Neurosci. 2013 Jul 16;7:124 - PubMed
  102. Neuropsychologia. 2012 Oct;50(12):2849-2859 - PubMed
  103. Electroencephalogr Clin Neurophysiol. 1975 Feb;38(2):113-9 - PubMed
  104. J Acoust Soc Am. 2012 May;131(5):3903-13 - PubMed
  105. Science. 1982 Jun 11;216(4551):1239-41 - PubMed
  106. Ear Hear. 2009 Oct;30(5):568-75 - PubMed
  107. J Acoust Soc Am. 2012 Nov;132(5):3292-304 - PubMed
  108. J Acoust Soc Am. 2013 Jul;134(1):384-95 - PubMed
  109. Electroencephalogr Clin Neurophysiol. 1997 Oct;103(4):474-85 - PubMed
  110. Otolaryngol Head Neck Surg. 2009 May;140(5):629-32 - PubMed
  111. J Acoust Soc Am. 1992 Jan;91(1):215-32 - PubMed
  112. Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):15151-6 - PubMed

Publication Types

Grant support