Display options
Share it on

Nat Mater. 2014 Mar;13(3):233-40. doi: 10.1038/nmat3816.

Charge-extraction strategies for colloidal quantum dot photovoltaics.

Nature materials

Xinzheng Lan, Silvia Masala, Edward H Sargent

Affiliations

  1. 1] Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada [2] School of Materials Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China.
  2. 1] Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada [2] Solar and Photovoltaic Engineering Research Center, King Abdullah University of Science and Technology, 4700 Thuwal 23955-6900, Saudi Arabia.
  3. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada.

PMID: 24553652 DOI: 10.1038/nmat3816

Abstract

The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p- and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction.

References

  1. Adv Mater. 2012 Dec 11;24(47):6295-9 - PubMed
  2. J Am Chem Soc. 2012 Feb 8;134(5):2508-11 - PubMed
  3. J Am Chem Soc. 2012 Jun 13;134(23):9537-40 - PubMed
  4. Nano Lett. 2011 Aug 10;11(8):3263-6 - PubMed
  5. Science. 2011 Dec 16;334(6062):1530-3 - PubMed
  6. J Am Chem Soc. 2012 Dec 12;134(49):20160-8 - PubMed
  7. ACS Nano. 2008 Feb;2(2):271-80 - PubMed
  8. Adv Mater. 2012 Dec 4;24(46):6181-5 - PubMed
  9. Science. 2005 Oct 7;310(5745):86-9 - PubMed
  10. Adv Mater. 2011 Jan 4;23(1):12-29 - PubMed
  11. Adv Mater. 2011 Sep 1;23(33):3832-7 - PubMed
  12. ACS Nano. 2012 Sep 25;6(9):8448-55 - PubMed
  13. Adv Mater. 2013 May 28;25(20):2790-6 - PubMed
  14. Adv Mater. 2010 Sep 1;22(33):3704-7 - PubMed
  15. Nano Lett. 2009 Apr;9(4):1699-703 - PubMed
  16. Nano Lett. 2012 Aug 8;12(8):3941-7 - PubMed
  17. J Am Chem Soc. 2008 Sep 17;130(37):12279-81 - PubMed
  18. J Phys Chem Lett. 2013 Jun 20;4(12):2030-4 - PubMed
  19. Chem Soc Rev. 2013 Jan 7;42(1):173-201 - PubMed
  20. Adv Mater. 2012 Apr 24;24(16):2202-6 - PubMed
  21. ACS Nano. 2008 May;2(5):833-40 - PubMed
  22. Nat Nanotechnol. 2011 Apr 24;6(6):348-52 - PubMed
  23. ACS Nano. 2013 Jul 23;7(7):6111-6 - PubMed
  24. Nat Nanotechnol. 2012 Sep;7(9):577-82 - PubMed
  25. ACS Nano. 2011 Feb 22;5(2):1495-504 - PubMed
  26. Nature. 2012 Aug 16;488(7411):304-12 - PubMed
  27. ACS Nano. 2010 Jun 22;4(6):3374-80 - PubMed
  28. Sci Rep. 2013;3:2225 - PubMed
  29. Sci Rep. 2013;3:2004 - PubMed
  30. Nano Lett. 2012 Sep 12;12(9):4889-94 - PubMed
  31. J Am Chem Soc. 2012 Aug 15;134(32):13200-3 - PubMed
  32. Adv Mater. 2013 Mar 25;25(12):1769-73 - PubMed
  33. Science. 2009 Jun 12;324(5933):1417-20 - PubMed
  34. Nat Commun. 2011 Sep 27;2:486 - PubMed
  35. ACS Nano. 2011 Oct 25;5(10):8140-7 - PubMed
  36. ACS Nano. 2008 Nov 25;2(11):2356-62 - PubMed
  37. Nano Lett. 2011 Dec 14;11(12):5349-55 - PubMed
  38. Nano Lett. 2008 Oct;8(10):3488-92 - PubMed
  39. Adv Mater. 2012 Feb 21;24(8):1017-32 - PubMed
  40. Adv Mater. 2013 Mar 25;25(12):1719-23 - PubMed
  41. J Phys Chem Lett. 2013 Feb 7;4(3):355-61 - PubMed
  42. Nano Lett. 2011 Jul 13;11(7):2955-61 - PubMed
  43. J Am Chem Soc. 2008 May 7;130(18):5974-85 - PubMed
  44. Nat Mater. 2011 Oct;10(10):765-71 - PubMed
  45. Nano Lett. 2013 Apr 10;13(4):1578-87 - PubMed
  46. ACS Nano. 2011 Oct 25;5(10):8175-86 - PubMed
  47. J Am Chem Soc. 2009 Mar 25;131(11):4078-83 - PubMed
  48. Nat Mater. 2005 Feb;4(2):138-42 - PubMed
  49. Adv Mater. 2012 May 2;24(17):2315-9 - PubMed
  50. Nano Lett. 2012 Jun 13;12(6):3043-9 - PubMed
  51. Nano Lett. 2011 Dec 14;11(12):5173-8 - PubMed
  52. Adv Mater. 2011 Jul 26;23(28):3134-8 - PubMed
  53. ACS Appl Mater Interfaces. 2013 Apr 10;5(7):2337-41 - PubMed
  54. Nano Lett. 2010 May 12;10(5):1960-9 - PubMed
  55. Nano Lett. 2012 Mar 14;12(3):1522-6 - PubMed
  56. Nano Lett. 2013 Mar 13;13(3):994-9 - PubMed

Publication Types