Display options
Share it on

Front Oncol. 2014 Feb 27;4:38. doi: 10.3389/fonc.2014.00038. eCollection 2014.

Radioembolization and the Dynamic Role of (90)Y PET/CT.

Frontiers in oncology

Alexander S Pasciak, Austin C Bourgeois, J Mark McKinney, Ted T Chang, Dustin R Osborne, Shelley N Acuff, Yong C Bradley

Affiliations

  1. The University of Tennessee Medical Center , Knoxville, TN , USA ; The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA.
  2. The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA.
  3. Mayo Clinic , Jacksonville, FL , USA.
  4. The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA ; University of Virginia Medical Center , Charlotte, VA , USA.

PMID: 24579065 PMCID: PMC3936249 DOI: 10.3389/fonc.2014.00038

Abstract

Before the advent of tomographic imaging, it was postulated that decay of (90) Y to the 0(+) excited state of (90)Zr may result in emission of a positron-electron pair. While the branching ratio for pair-production is small (~32 × 10(-6)), PET has been successfully used to image (90) Y in numerous recent patients and phantom studies. (90) Y PET imaging has been performed on a variety of PET/CT systems, with and without time-of-flight (TOF) and/or resolution recovery capabilities as well as on both bismuth-germanate and lutetium yttrium orthosilicate (LYSO)-based scanners. On all systems, resolution and contrast superior to bremsstrahlung SPECT has been reported. The intrinsic radioactivity present in LYSO-based PET scanners is a potential limitation associated with accurate quantification of (90) Y. However, intrinsic radioactivity has been shown to have a negligible effect at the high activity concentrations common in (90) Y radioembolization. Accurate quantification is possible on a variety of PET scanner models, with or without TOF, although TOF improves accuracy at lower activity concentrations. Quantitative (90) Y PET images can be transformed into 3-dimensional (3D) maps of absorbed dose based on the premise that the (90) Y activity distribution does not change after infusion. This transformation has been accomplished in several ways, although the most common is with the use of 3D dose-point-kernel convolution. From a clinical standpoint, (90) Y PET provides a superior post-infusion evaluation of treatment technical success owing to its improved resolution. Absorbed dose maps generated from quantitative PET data can be used to predict treatment efficacy and manage patient follow-up. For patients who receive multiple treatments, this information can also be used to provide patient-specific treatment-planning for successive therapies, potentially improving response. The broad utilization of (90) Y PET has the potential to provide a wealth of dose-response information, which may lead to development of improved radioembolization treatment-planning models in the future.

Keywords: 90 Y PET; post-treatment imaging; quantitative imaging; radioembolization; radioembolization dosimetry

References

  1. J Vasc Interv Radiol. 2013 Aug;24(8):1147-53 - PubMed
  2. J Nucl Med. 2013 Sep;54(9):1557-63 - PubMed
  3. Nucl Med Commun. 2012 Jun;33(6):633-40 - PubMed
  4. Eur J Nucl Med Mol Imaging. 2010 Aug;37(9):1654-62 - PubMed
  5. Phys Med Biol. 2010 Nov 21;55(22):6739-57 - PubMed
  6. J Nucl Med. 1994 Aug;35(8):1377-80 - PubMed
  7. Comput Methods Programs Biomed. 2007 Aug;87(2):112-22 - PubMed
  8. Phys Med Biol. 2011 Nov 7;56(21):6759-77 - PubMed
  9. EJNMMI Res. 2013 Jul 25;3(1):57 - PubMed
  10. J Nucl Med. 2010 Sep;51(9):1377-85 - PubMed
  11. J Nucl Med. 2002 Aug;43(8):1054-62 - PubMed
  12. Clin Nucl Med. 2011 Dec;36(12):e186-7 - PubMed
  13. EJNMMI Res. 2013 Jul 25;3(1):56 - PubMed
  14. Phys Med Biol. 2012 Jan 21;57(2):517-33 - PubMed
  15. Med Phys. 2006 Sep;33(9):3383-9 - PubMed
  16. EJNMMI Res. 2011 Dec 02;1(1):32 - PubMed
  17. AJR Am J Roentgenol. 2009 Dec;193(6):1640-5 - PubMed
  18. J Nucl Med. 2014 Jan;55(1):135-40 - PubMed
  19. Int J Radiat Oncol Biol Phys. 2004 Dec 1;60(5):1552-63 - PubMed
  20. Phys Med Biol. 2012 Feb 7;57(3):733-55 - PubMed
  21. J Vasc Interv Radiol. 2013 Mar;24(3):333-7 - PubMed
  22. Ann Nucl Med. 2013 Aug;27(7):676-80 - PubMed
  23. Eur J Nucl Med Mol Imaging. 2009 Oct;36(10):1696 - PubMed
  24. Med Phys. 2013 Aug;40(8):081702 - PubMed
  25. IEEE Trans Med Imaging. 2013 Mar;32(3):485-92 - PubMed
  26. Eur J Nucl Med Mol Imaging. 2008 Nov;35(11):2088-96 - PubMed
  27. J Nucl Med. 2011 Jan;52(1):72-6 - PubMed
  28. EJNMMI Res. 2013 Feb 17;3(1):11 - PubMed
  29. Technol Cancer Res Treat. 2010 Jun;9(3):253-62 - PubMed
  30. J Appl Clin Med Phys. 2006 Winter;7(1):77-85 - PubMed
  31. J Nucl Med. 2006 Jul;47(7):1209-11 - PubMed
  32. PLoS One. 2013;8(2):e55742 - PubMed
  33. J Nucl Med. 2013 Aug;54(8):1294-301 - PubMed
  34. IEEE Trans Med Imaging. 2009 Nov;28(11):1754-8 - PubMed
  35. J Vasc Interv Radiol. 2014 Feb;25(2):271-5 - PubMed
  36. Clin Nucl Med. 2012 Jan;37(1):98-9 - PubMed
  37. Med Phys. 2000 Mar;27(3):485-98 - PubMed
  38. Eur J Nucl Med. 1996 Aug;23(8):947-52 - PubMed
  39. Br J Radiol. 2012 Jul;85(1015):1018-9 - PubMed
  40. Ann Nucl Med. 2009 Feb;23(2):191-6 - PubMed
  41. J Nucl Med. 2011 Dec;52(12):1930-7 - PubMed
  42. Eur J Radiol. 2013 Oct;82(10):1696-701 - PubMed
  43. J Nucl Med. 2010 Dec;51(12):1969-73 - PubMed
  44. Nucl Med Commun. 2012 Feb;33(2):198-204 - PubMed
  45. Med Phys. 2012 Nov;39(11):7153-9 - PubMed
  46. Med Phys. 2005 Apr;32(4):874-89 - PubMed
  47. Appl Radiat Isot. 2007 Mar;65(3):318-27 - PubMed
  48. Eur J Nucl Med Mol Imaging. 2010 Feb;37(2):407-8 - PubMed

Publication Types