Display options
Share it on

Tissue Barriers. 2013 Jan 01;1(1):e23699. doi: 10.4161/tisb.23699.

How do your contacts (or their absence) shape your fate?.

Tissue barriers

Emmanuel Charbonney, Pam Speight, András Kapus

Affiliations

  1. Keenan Research Centre; Li Ka Shing Knowledge Institute; St. Michael's Hospital and Department of Surgery; University of Toronto; Toronto, ON Canada.

PMID: 24665378 PMCID: PMC3875604 DOI: 10.4161/tisb.23699

Abstract

Tissue accumulation of contractile myofibroblasts is a key feature of a multitude of fibrotic diseases. Myofibroblast generation either from epithelial or mesenchymal precursors involves the activation of a myogenic program, hallmarked by the expression of α-smooth muscle actin (SMA). Recent research suggests that this robust phenotypic reprogramming requires two critical inputs: the fibrogenic cytokine transforming growth factor-β1 (TGFβ) and an injury (or absence) of intercellular junctions. This two-hit paradigm of epithelial-myofibroblast transition (EMyT) postulates that the injured (contact-deprived) epithelium is locally and selectively sensitive (topically susceptible) to the transforming effect of TGFβ, while the intact areas are quite resistant to the phenotype-changing effect of this cytokine. Searching for molecular mechanisms underlying the synergy between contact injury and TGFβ, we found that an interplay among three multifunctional transcriptional (co)activators, the junction component β-catenin, the TGFβ receptor target Smad3, and the actin cytoskeleton-regulated myocardin-related transcription factor (MRTF) controls the magnitude and timing of SMA expression.(1) Moreover, this regulation is realized not only at the transcriptional level. Notably, these factors form a pretranscriptional circuit, in which they impact each other's activity and stability. Based on this recent paper we ponder about the mechanisms of cellular plasticity in the context of EMyT. We propose that topical susceptibility to TGFβ, triggered by cell contact-modulated pretranscriptional and transcriptional control is realized through the crosstalk of a few master regulators, whose coordinated action tailors SMA expression and contributes to the major decision of whether injury leads to healing or fibrosis.

Keywords: Smad3; TGFbeta signalng; epithelial plasticity; epithelial-mesenchymal transition; fibrosis; myelofibroblast; myocardin-related transcription facr; smooth muscle actin; β-catenin

References

  1. J Biol Chem. 2011 Aug 12;286(32):28097-110 - PubMed
  2. Am J Pathol. 2012 Apr;180(4):1340-55 - PubMed
  3. Nat Cell Biol. 2008 Jul;10(7):837-48 - PubMed
  4. J Cell Biol. 2009 Jan 26;184(2):309-22 - PubMed
  5. Annu Rev Cell Dev Biol. 2011;27:347-76 - PubMed
  6. Am J Pathol. 2009 Aug;175(2):580-91 - PubMed
  7. J Cell Biol. 2007 Dec 3;179(5):1027-42 - PubMed
  8. Mol Biol Cell. 2007 Mar;18(3):1083-97 - PubMed
  9. Am J Pathol. 2002 May;160(5):1619-28 - PubMed
  10. J Cell Sci. 2008 Apr 1;121(Pt 7):1025-35 - PubMed
  11. Curr Opin Oncol. 2013 Jan;25(1):76-84 - PubMed
  12. Mol Biol Cell. 2011 Dec;22(23):4472-85 - PubMed
  13. Biochem Biophys Res Commun. 2002 Jun 7;294(2):319-23 - PubMed
  14. Annu Rev Cell Dev Biol. 2005;21:659-93 - PubMed
  15. FEBS Lett. 2008 Jan 23;582(2):291-8 - PubMed
  16. Am J Pathol. 2004 Dec;165(6):1955-67 - PubMed
  17. J Clin Invest. 2009 Jun;119(6):1420-8 - PubMed
  18. J Biol Chem. 2011 Aug 26;286(34):30119-29 - PubMed
  19. Kidney Int. 2011 Jul;80(1):41-50 - PubMed
  20. J Biol Chem. 2007 May 25;282(21):15534-40 - PubMed
  21. Am J Pathol. 2010 Aug;177(2):512-24 - PubMed
  22. J Pathol. 2013 Jan;229(2):298-309 - PubMed
  23. J Biol Chem. 2012 Mar 2;287(10):7026-38 - PubMed
  24. Cell Tissue Res. 2012 Jan;347(1):177-86 - PubMed
  25. Lab Invest. 2010 Sep;90(9):1274-84 - PubMed
  26. Dev Dyn. 1994 Dec;201(4):378-93 - PubMed
  27. Cell. 2003 May 2;113(3):329-42 - PubMed
  28. J Clin Invest. 2009 Jun;119(6):1429-37 - PubMed
  29. Mol Cell Biol. 2009 May;29(9):2398-408 - PubMed
  30. J Invest Dermatol. 2011 Dec;131(12):2378-85 - PubMed
  31. Nat Rev Mol Cell Biol. 2010 May;11(5):353-65 - PubMed
  32. J Biol Chem. 2011 Dec 23;286(51):44116-44125 - PubMed
  33. Curr Opin Rheumatol. 2013 Jan;25(1):101-7 - PubMed
  34. J Biol Chem. 2012 Feb 10;287(7):5164-72 - PubMed
  35. Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1067-H1075 - PubMed
  36. Cells Tissues Organs. 2011;193(1-2):41-52 - PubMed
  37. Am J Pathol. 2010 Jan;176(1):85-97 - PubMed
  38. Circ Res. 2010 Jul 23;107(2):294-304 - PubMed
  39. Dev Cell. 2010 Dec 14;19(6):831-44 - PubMed
  40. Mol Cell Biol. 2007 Jan;27(2):622-32 - PubMed
  41. J Cell Biol. 2010 Feb 8;188(3):383-99 - PubMed
  42. Kidney Int. 2011 Mar;79(5):494-501 - PubMed
  43. Development. 2012 Oct;139(19):3471-86 - PubMed
  44. J Am Soc Nephrol. 2010 Aug;21(8):1247-53 - PubMed
  45. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14309-14 - PubMed
  46. Genes Cells. 2005 Aug;10(8):835-50 - PubMed
  47. Dev Dyn. 2005 Jul;233(3):706-20 - PubMed

Publication Types