Display options
Share it on

Front Cell Neurosci. 2014 Mar 07;8:68. doi: 10.3389/fncel.2014.00068. eCollection 2014.

A selective histone deacetylase-6 inhibitor improves BDNF trafficking in hippocampal neurons from Mecp2 knockout mice: implications for Rett syndrome.

Frontiers in cellular neuroscience

Xin Xu, Alan P Kozikowski, Lucas Pozzo-Miller

Affiliations

  1. Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham Birmingham, AL, USA.
  2. Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago Chicago, IL, USA.

PMID: 24639629 PMCID: PMC3945638 DOI: 10.3389/fncel.2014.00068

Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional modulator methyl-CpG-binding protein 2 (MECP2). One of the most prominent gene targets of MeCP2 is brain-derived neurotrophic factor (Bdnf), a potent modulator of activity-dependent synaptic development, function and plasticity. Dysfunctional BDNF signaling has been demonstrated in several pathophysiological mechanisms of RTT disease progression. To evaluate whether the dynamics of BDNF trafficking is affected by Mecp2 deletion, we analyzed movements of BDNF tagged with yellow fluorescent protein (YFP) in cultured hippocampal neurons by time-lapse fluorescence imaging. We found that both anterograde and retrograde vesicular trafficking of BDNF-YFP are significantly impaired in Mecp2 knockout hippocampal neurons. Selective inhibitors of histone deacetylase 6 (HDAC6) show neuroprotective effects in neurodegenerative diseases and stimulate microtubule-dependent vesicular trafficking of BDNF-containing dense core vesicles. Here, we show that the selective HDAC6 inhibitor Tubastatin-A increased the velocity of BDNF-YFP vesicles in Mecp2 knockout neurons in both directions by increasing α-tubulin acetylation. Tubastatin-A also restored activity-dependent BDNF release from Mecp2 knockout neurons to levels comparable to those shown by wildtype neurons. These findings demonstrate that a selective HDAC6 inhibitor is a potential pharmacological strategy to reverse cellular and synaptic impairments in RTT resulting from impaired BDNF signaling.

Keywords: Rett syndrome; Tubastatin-A; activity-dependent BDNF release; dense core vesicle; tubulin acetylation

References

  1. J Am Chem Soc. 2010 Aug 11;132(31):10842-6 - PubMed
  2. Nat Rev Drug Discov. 2008 Oct;7(10):854-68 - PubMed
  3. Nat Rev Neurosci. 2001 Jan;2(1):24-32 - PubMed
  4. J Cell Sci. 2007 Apr 15;120(Pt 8):1469-79 - PubMed
  5. Neuron. 2006 Feb 2;49(3):341-8 - PubMed
  6. Trends Cell Biol. 2008 Jun;18(6):291-7 - PubMed
  7. Neurosci Res. 2009 Sep;65(1):11-22 - PubMed
  8. J Neurosci. 2002 Feb 1;22(3):931-45 - PubMed
  9. J Neurosci. 2009 Nov 11;29(45):14185-98 - PubMed
  10. J Neurosci. 2007 Oct 3;27(40):10912-7 - PubMed
  11. Cell. 2003 Jan 24;112(2):257-69 - PubMed
  12. J Biol Chem. 2005 Dec 2;280(48):40282-92 - PubMed
  13. J Neurosci. 2007 May 9;27(19):5179-89 - PubMed
  14. Prog Neurobiol. 2003 Apr;69(5):341-74 - PubMed
  15. EMBO J. 2002 Dec 16;21(24):6820-31 - PubMed
  16. Neurobiol Dis. 2012 Feb;45(2):786-95 - PubMed
  17. Mol Cell Biol. 2007 Dec;27(24):8637-47 - PubMed
  18. Curr Biol. 2006 Nov 7;16(21):2166-72 - PubMed
  19. PLoS One. 2012;7(2):e30924 - PubMed
  20. Cell. 1997 Feb 21;88(4):471-81 - PubMed
  21. Science. 2001 Mar 23;291(5512):2419-23 - PubMed
  22. PLoS One. 2012;7(8):e42983 - PubMed
  23. J Neurosci. 2007 Sep 26;27(39):10350-64 - PubMed
  24. Neurobiol Aging. 2011 May;32(5):821-33 - PubMed
  25. Neurology. 2009 Apr 7;72(14):1242-7 - PubMed
  26. Neural Plast. 2012;2012:203734 - PubMed
  27. Nat Rev Genet. 2006 Jun;7(6):415-26 - PubMed
  28. Epigenetics. 2007 Oct-Dec;2(4):214-22 - PubMed
  29. J Neurosci. 2007 Mar 28;27(13):3571-83 - PubMed
  30. Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21104-9 - PubMed
  31. Neuron. 2007 Nov 8;56(3):422-37 - PubMed
  32. J Neurosci. 2006 Oct 18;26(42):10911-5 - PubMed
  33. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19599-604 - PubMed
  34. Cell. 2004 Jul 9;118(1):127-38 - PubMed
  35. Science. 2003 Oct 31;302(5646):890-3 - PubMed
  36. EMBO J. 2001 Nov 1;20(21):5887-97 - PubMed
  37. Nat Genet. 1999 Oct;23(2):185-8 - PubMed
  38. Neuron. 2006 Oct 19;52(2):255-69 - PubMed
  39. J Cell Sci. 1998 Jun;111 ( Pt 11):1483-93 - PubMed
  40. Science. 2003 Oct 31;302(5646):885-9 - PubMed
  41. Curr Biol. 2007 Jan 9;17(1):R18-20 - PubMed
  42. J Biol Chem. 2011 Jun 17;286(24):21667-77 - PubMed
  43. Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17087-92 - PubMed
  44. J Child Neurol. 2005 Sep;20(9):718-21 - PubMed
  45. J Neural Transm Suppl. 2002;(62):241-52 - PubMed
  46. Mol Cell Neurosci. 2008 Sep;39(1):63-73 - PubMed
  47. Nat Med. 2011 Jul 24;17(8):968-74 - PubMed
  48. EMBO J. 2003 Mar 3;22(5):1168-79 - PubMed
  49. Nat Genet. 2001 Mar;27(3):327-31 - PubMed
  50. J Neurodev Disord. 2009 Sep;1(3):185-96 - PubMed
  51. J Biol Chem. 2010 Jul 9;285(28):21537-48 - PubMed
  52. J Neurosci. 2009 Sep 16;29(37):11650-61 - PubMed
  53. Nature. 2002 May 23;417(6887):455-8 - PubMed

Publication Types

Grant support