Display options
Share it on

Front Cell Neurosci. 2014 Mar 18;8:84. doi: 10.3389/fncel.2014.00084. eCollection 2014.

A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions.

Frontiers in cellular neuroscience

Marie Violet, Lucie Delattre, Meryem Tardivel, Audrey Sultan, Alban Chauderlier, Raphaelle Caillierez, Smail Talahari, Fabrice Nesslany, Bruno Lefebvre, Eliette Bonnefoy, Luc Buée, Marie-Christine Galas

Affiliations

  1. Inserm UMR837, Alzheimer and Tauopathies Lille, France ; Jean Pierre Aubert Research Centre, Faculté de Médecine-Pôle Recherche, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université Dro?t et Santé de Lille, CHU-Lille Lille, France.
  2. Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille Lille, France.
  3. CNRS FRE 3235, Génétique Moléculaire et Défense Antivirale Paris, France.

PMID: 24672431 PMCID: PMC3957276 DOI: 10.3389/fncel.2014.00084

Abstract

Nucleic acid protection is a substantial challenge for neurons, which are continuously exposed to oxidative stress in the brain. Neurons require powerful mechanisms to protect DNA and RNA integrity and ensure their functionality and longevity. Beside its well known role in microtubule dynamics, we recently discovered that Tau is also a key nuclear player in the protection of neuronal genomic DNA integrity under reactive oxygen species (ROS)-inducing heat stress (HS) conditions in primary neuronal cultures. In this report, we analyzed the capacity of Tau to protect neuronal DNA integrity in vivo in adult mice under physiological and HS conditions. We designed an in vivo mouse model of hyperthermia/HS to induce a transient increase in ROS production in the brain. Comet and Terminal deoxyribonucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assays demonstrated that Tau protected genomic DNA in adult cortical and hippocampal neurons in vivo under physiological conditions in wild-type (WT) and Tau-deficient (KO-Tau) mice. HS increased DNA breaks in KO-Tau neurons. Notably, KO-Tau hippocampal neurons in the CA1 subfield restored DNA integrity after HS more weakly than the dentate gyrus (DG) neurons. The formation of phosphorylated histone H2AX foci, a double-strand break marker, was observed in KO-Tau neurons only after HS, indicating that Tau deletion did not trigger similar DNA damage under physiological or HS conditions. Moreover, genomic DNA and cytoplasmic and nuclear RNA integrity were altered under HS in hippocampal neurons exhibiting Tau deficiency, which suggests that Tau also modulates RNA metabolism. Our results suggest that Tau alterations lead to a loss of its nucleic acid safeguarding functions and participate in the accumulation of DNA and RNA oxidative damage observed in the Alzheimer's disease (AD) brain.

Keywords: DNA damage; DNA repair; RNA damage; Tau; hyperthermia; oxidative stress; γ-H2AX

References

  1. Mech Ageing Dev. 2011 Aug;132(8-9):443-8 - PubMed
  2. J Alzheimers Dis. 2014;39(3):649-60 - PubMed
  3. DNA Repair (Amst). 2013 Aug;12(8):578-87 - PubMed
  4. DNA Repair (Amst). 2008 Jul 1;7(7):1087-97 - PubMed
  5. Front Aging Neurosci. 2010 Mar 30;2:12 - PubMed
  6. Nat Neurosci. 2001 Jan;4(1):29-37 - PubMed
  7. FEBS Lett. 1996 Dec 16;399(3):344-9 - PubMed
  8. Acta Neuropathol. 2009 Jul;118(1):151-66 - PubMed
  9. J Neurosci. 2007 Mar 21;27(12):3090-7 - PubMed
  10. PLoS One. 2008 Jul 02;3(7):e2600 - PubMed
  11. Int J Alzheimers Dis. 2012;2012:873270 - PubMed
  12. J Biol Chem. 2006 Jul 14;281(28):19296-304 - PubMed
  13. Neurotox Res. 2012 Oct;22(3):231-48 - PubMed
  14. FEBS Lett. 1998 Jul 17;431(2):285-6 - PubMed
  15. Free Radic Biol Med. 2007 Feb 1;42(3):385-93 - PubMed
  16. J Biol Chem. 2011 Feb 11;286(6):4566-75 - PubMed
  17. Nature. 2003 Feb 20;421(6925):859-63 - PubMed
  18. J Cell Sci. 2006 May 15;119(Pt 10):2025-34 - PubMed
  19. Mitochondrion. 2014 May;16:38-49 - PubMed
  20. In Vivo. 2008 May-Jun;22(3):305-9 - PubMed
  21. Nat Cell Biol. 2011 Oct 03;13(10):1161-9 - PubMed
  22. J Neurochem. 2014 Jan;128(2):294-304 - PubMed
  23. J Neurochem. 1996 Mar;66(3):1140-9 - PubMed
  24. Genetics. 2012 Apr;190(4):1157-95 - PubMed
  25. Am J Respir Cell Mol Biol. 2005 Aug;33(2):121-9 - PubMed
  26. Mol Biol Cell. 2006 Aug;17(8):3409-22 - PubMed
  27. Mech Ageing Dev. 2006 Jan;127(1):64-9 - PubMed
  28. Mech Ageing Dev. 2008 Jul-Aug;129(7-8):475-82 - PubMed
  29. Curr Alzheimer Res. 2009 Feb;6(1):36-47 - PubMed
  30. Free Radic Biol Med. 2012 Apr 15;52(8):1353-61 - PubMed
  31. Radiat Res. 1990 Apr;122(1):86-94 - PubMed

Publication Types