Display options
Share it on

Genes (Basel). 2012 May 16;3(2):291-319. doi: 10.3390/genes3020291.

The chlamydiales pangenome revisited: structural stability and functional coherence.

Genes

Fotis E Psomopoulos, Victoria I Siarkou, Nikolas Papanikolaou, Ioannis Iliopoulos, Athanasios S Tsaftaris, Vasilis J Promponas, Christos A Ouzounis

Affiliations

  1. Institute of Agrobiotechnology, Centre for Research & Technology Hellas (CERTH), Thessaloniki GR-57001, Greece. [email protected].
  2. Laboratory of Microbiology & Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece. [email protected].
  3. Division of Medical Sciences, University of Crete Medical School, Heraklion GR-71110, Greece. [email protected].
  4. Division of Medical Sciences, University of Crete Medical School, Heraklion GR-71110, Greece. [email protected].
  5. Institute of Agrobiotechnology, Centre for Research & Technology Hellas (CERTH), Thessaloniki GR-57001, Greece. [email protected].
  6. Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus. [email protected].
  7. Institute of Agrobiotechnology, Centre for Research & Technology Hellas (CERTH), Thessaloniki GR-57001, Greece. [email protected].

PMID: 24704919 PMCID: PMC3899948 DOI: 10.3390/genes3020291

Abstract

The entire publicly available set of 37 genome sequences from the bacterial order Chlamydiales has been subjected to comparative analysis in order to reveal the salient features of this pangenome and its evolutionary history. Over 2,000 protein families are detected across multiple species, with a distribution consistent to other studied pangenomes. Of these, there are 180 protein families with multiple members, 312 families with exactly 37 members corresponding to core genes, 428 families with peripheral genes with varying taxonomic distribution and finally 1,125 smaller families. The fact that, even for smaller genomes of Chlamydiales, core genes represent over a quarter of the average protein complement, signifies a certain degree of structural stability, given the wide range of phylogenetic relationships within the group. In addition, the propagation of a corpus of manually curated annotations within the discovered core families reveals key functional properties, reflecting a coherent repertoire of cellular capabilities for Chlamydiales. We further investigate over 2,000 genes without homologs in the pangenome and discover two new protein sequence domains. Our results, supported by the genome-based phylogeny for this group, are fully consistent with previous analyses and current knowledge, and point to future research directions towards a better understanding of the structural and functional properties of Chlamydiales.

References

  1. Genome Biol. 2010;11(10):R107 - PubMed
  2. Infect Immun. 2011 Feb;79(2):571-80 - PubMed
  3. Genome Biol Evol. 2010;2:870-86 - PubMed
  4. Proteomics. 2004 Oct;4(10):2831-42 - PubMed
  5. Nucleic Acids Res. 2005 Jan 28;33(2):616-21 - PubMed
  6. Genome Biol. 2002;3(2):COMMENT2001 - PubMed
  7. Bioinformatics. 2003 Jul 22;19(11):1412-6 - PubMed
  8. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4285-8 - PubMed
  9. Microb Ecol. 2011 Oct;62(3):487-504 - PubMed
  10. PLoS One. 2010 May 28;5(5):e10890 - PubMed
  11. Science. 2004 Apr 30;304(5671):728-30 - PubMed
  12. Genome Biol. 2007;8(6):R99 - PubMed
  13. PLoS One. 2008 May 21;3(5):e2205 - PubMed
  14. Genome Biol Evol. 2010;2:646-55 - PubMed
  15. FEMS Immunol Med Microbiol. 2009 Mar;55(2):115-9 - PubMed
  16. Bioinformatics. 2000 Oct;16(10):915-22 - PubMed
  17. Bioinformatics. 2005 Oct 1;21(19):3806-10 - PubMed
  18. BMC Bioinformatics. 2010 Sep 15;11:461 - PubMed
  19. Annu Rev Microbiol. 2008;62:113-31 - PubMed
  20. Crit Rev Microbiol. 2003;29(1):37-78 - PubMed
  21. Nucleic Acids Res. 2001 Nov 1;29(21):4395-404 - PubMed
  22. BMC Bioinformatics. 2011 Jun 30;12:272 - PubMed
  23. FEBS Lett. 1993 May 10;322(2):159-64 - PubMed
  24. BMC Microbiol. 2010 Jan 22;10:18 - PubMed
  25. Cell Microbiol. 2000 Aug;2(4):275-82 - PubMed
  26. Annu Rev Microbiol. 2005;59:191-209 - PubMed
  27. Mol Biol Evol. 2011 Dec;28(12):3253-70 - PubMed
  28. Science. 1998 Oct 23;282(5389):754-9 - PubMed
  29. Bioinformatics. 2009 May 1;25(9):1189-91 - PubMed
  30. Genome Res. 2002 Aug;12(8):1159-67 - PubMed
  31. Biol Direct. 2009 Apr 10;4:13 - PubMed
  32. Science. 2010 Nov 26;330(6008):1187-8 - PubMed
  33. PLoS Pathog. 2011 Sep;7(9):e1002258 - PubMed
  34. Bioinformatics. 2005 Aug 15;21(16):3429-30 - PubMed
  35. Trends Genet. 2009 Mar;25(3):107-10 - PubMed
  36. BMC Evol Biol. 2008 Jul 15;8:203 - PubMed
  37. Annu Rev Genet. 2008;42:165-90 - PubMed
  38. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  39. Nat Genet. 2012 Mar 11;44(4):413-9, S1 - PubMed
  40. Nucleic Acids Res. 2011 Jan;39(Database issue):D38-51 - PubMed
  41. Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 - PubMed
  42. Trends Biochem Sci. 1994 May;19(5):199-200 - PubMed
  43. Curr Opin Microbiol. 2004 Feb;7(1):85-92 - PubMed
  44. Bioinformatics. 2003 Apr 12;19(6):717-26 - PubMed
  45. BMC Genomics. 2009 Dec 29;10:634 - PubMed
  46. Bioinformatics. 2003 Jul 22;19(11):1451-2 - PubMed
  47. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  48. Bioessays. 2011 Nov;33(11):810-7 - PubMed
  49. Int J Syst Bacteriol. 1999 Apr;49 Pt 2:415-40 - PubMed
  50. Crit Rev Microbiol. 2004;30(2):75-106 - PubMed
  51. Int J Syst Evol Microbiol. 2001 Jan;51(Pt 1):203-20 - PubMed

Publication Types