Display options
Share it on

Front Plant Sci. 2014 Apr 03;5:132. doi: 10.3389/fpls.2014.00132. eCollection 2014.

Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana.

Frontiers in plant science

Efthimios A Andronis, Panagiotis N Moschou, Imene Toumi, Kalliopi A Roubelakis-Angelakis

Affiliations

  1. Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of Crete Heraklion, Greece.
  2. Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology Uppsala, Sweden.

PMID: 24765099 PMCID: PMC3982065 DOI: 10.3389/fpls.2014.00132

Abstract

Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions ([Formula: see text] ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and [Formula: see text] . These results suggest that the ratio of [Formula: see text] /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of [Formula: see text] by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

Keywords: Arabidopsis; NADPH-oxidase; ROS homeostasis; polyamine oxidases; polyamines; respiration

References

  1. Plant J. 2003 Dec;36(6):820-9 - PubMed
  2. Methods Mol Biol. 2011;720:183-94 - PubMed
  3. Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1757-64 - PubMed
  4. Plant Physiol. 2011 Dec;157(4):2167-80 - PubMed
  5. Plant Physiol Biochem. 2010 Jul;48(7):560-4 - PubMed
  6. Plant Sci. 2011 Jan;180(1):31-8 - PubMed
  7. Antioxid Redox Signal. 2005 May-Jun;7(5-6):741-51 - PubMed
  8. J Biol Chem. 2004 Sep 17;279(38):40161-73 - PubMed
  9. J Plant Physiol. 2010 May 1;167(7):519-25 - PubMed
  10. Anal Biochem. 1971 Nov;44(1):276-87 - PubMed
  11. Science. 1996 Sep 27;273(5283):1853-6 - PubMed
  12. Plant Physiol. 2007 Jan;143(1):389-99 - PubMed
  13. Plant Physiol. 2003 Aug;132(4):1973-81 - PubMed
  14. Plant Signal Behav. 2011 Feb;6(2):243-50 - PubMed
  15. Oncogene. 2007 Feb 22;26(8):1101-9 - PubMed
  16. Plant Cell. 2004 Mar;16(3):616-28 - PubMed
  17. Plant Physiol. 2006 Aug;141(4):1519-32 - PubMed
  18. Biochem Soc Trans. 2007 Apr;35(Pt 2):300-4 - PubMed
  19. Plant Physiol. 2006 Sep;142(1):193-206 - PubMed
  20. Plant Physiol. 2011 Sep;157(1):200-15 - PubMed
  21. Plant Cell. 2013 Sep;25(9):3553-69 - PubMed
  22. Plant Cell. 2013 Jun;25(6):2171-86 - PubMed
  23. J Biol Chem. 2004 Nov 19;279(47):49064-73 - PubMed
  24. Biochim Biophys Acta. 1987 Sep 14;930(2):135-9 - PubMed
  25. Ann Bot. 2010 Jan;105(1):1-6 - PubMed
  26. Plant Physiol. 2011 Jan;155(1):2-18 - PubMed
  27. Plant Cell Physiol. 2008 Sep;49(9):1272-82 - PubMed
  28. Yeast. 2006 Jul 30;23(10):751-61 - PubMed
  29. J Exp Bot. 2012 Sep;63(14):5003-15 - PubMed
  30. BMC Plant Biol. 2013 Aug 05;13:109 - PubMed
  31. Plant Physiol. 2008 Aug;147(4):1845-57 - PubMed
  32. Trends Biochem Sci. 1993 Feb;18(2):43-7 - PubMed
  33. J Exp Bot. 2014 Mar;65(5):1285-96 - PubMed
  34. Physiol Plant. 2008 Jun;133(2):140-56 - PubMed
  35. Nat Genet. 2005 Oct;37(10):1130-4 - PubMed
  36. Plant Physiol. 2004 Mar;134(3):1100-12 - PubMed
  37. Amino Acids. 2012 Feb;42(2-3):831-41 - PubMed
  38. Plant Cell. 2011 Mar;23(3):1093-106 - PubMed
  39. OMICS. 2011 Nov;15(11):775-81 - PubMed
  40. Plant Cell. 2013 Nov;25(11):4616-26 - PubMed
  41. Plant Cell. 2008 Jun;20(6):1708-24 - PubMed
  42. Plant Sci. 2011 Nov;181(5):593-603 - PubMed
  43. Planta. 2005 Apr;220(6):826-37 - PubMed
  44. Cell. 2010 Nov 12;143(4):606-16 - PubMed
  45. Plant Physiol. 2006 Apr;140(4):1222-32 - PubMed
  46. J Exp Bot. 2011 Jan;62(3):1155-68 - PubMed
  47. Planta. 2010 Jan;231(2):437-48 - PubMed
  48. Nat Cell Biol. 2009 Nov;11(11):1305-14 - PubMed
  49. Plant Physiol. 2006 Dec;142(4):1759-70 - PubMed
  50. Nature. 2009 Sep 24;461(7263):537-41 - PubMed
  51. Aging Cell. 2008 Jun;7(3):405-17 - PubMed
  52. Plant J. 2010 Sep;63(6):1042-53 - PubMed
  53. Plant Physiol. 2002 Jan;128(1):212-22 - PubMed
  54. Plant Physiol. 2005 Aug;138(4):2174-84 - PubMed
  55. Plant Physiol. 2005 May;138(1):142-52 - PubMed
  56. Front Plant Sci. 2013 Nov 25;4:479 - PubMed
  57. EMBO J. 2003 Jun 2;22(11):2623-33 - PubMed
  58. Physiol Plant. 2001 Jul;112(3):327-333 - PubMed
  59. Plant J. 1998 Mar;13(6):781-91 - PubMed
  60. Plant Physiol Biochem. 2012 Dec;61:18-23 - PubMed
  61. Plant Cell Environ. 2013 Apr;36(4):775-88 - PubMed
  62. J Exp Bot. 2014 Apr;65(6):1585-603 - PubMed
  63. Cell Mol Life Sci. 2002 Sep;59(9):1428-59 - PubMed
  64. Plant Physiol. 1995 Oct;109(2):421-432 - PubMed
  65. Pharmacol Biochem Behav. 2004 May;78(1):35-45 - PubMed

Publication Types