Display options
Share it on

Plant Cell. 2014 Apr;26(4):1698-1711. doi: 10.1105/tpc.114.124446. Epub 2014 Apr 08.

Plasma Membranes Are Subcompartmentalized into a Plethora of Coexisting and Diverse Microdomains in Arabidopsis and Nicotiana benthamiana.

The Plant cell

Iris K Jarsch, Sebastian S A Konrad, Thomas F Stratil, Susan L Urbanus, Witold Szymanski, Pascal Braun, Karl-Heinz Braun, Thomas Ott

Affiliations

  1. Ludwig-Maximilians-University of Munich, Faculty of Biology, Institute of Genetics, 82152 Martinsried, Germany.
  2. Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
  3. Department of Plant Systems Biology, Center for Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany.
  4. Ludwig-Maximilians-University of Munich, Faculty of Biology, Institute of Genetics, 82152 Martinsried, Germany [email protected].

PMID: 24714763 PMCID: PMC4036580 DOI: 10.1105/tpc.114.124446

Abstract

Eukaryotic plasma membranes are highly compartmentalized structures. So far, only a few individual proteins that function in a wide range of cellular processes have been shown to segregate into microdomains. However, the biological roles of most microdomain-associated proteins are unknown. Here, we investigated the heterogeneity of distinct microdomains and the complexity of their coexistence. This diversity was determined in living cells of intact multicellular tissues using 20 different marker proteins from Arabidopsis thaliana, mostly belonging to the Remorin protein family. These proteins associate with microdomains at the cytosolic leaflet of the plasma membrane. We characterized these membrane domains and determined their lateral dynamics by extensive quantitative image analysis. Systematic colocalization experiments with an extended subset of marker proteins tested in 45 different combinations revealed the coexistence of highly distinct membrane domains on individual cell surfaces. These data provide valuable tools to study the lateral segregation of membrane proteins and their biological functions in living plant cells. They also demonstrate that widely used biochemical approaches such as detergent-resistant membranes cannot resolve this biological complexity of membrane compartmentalization in vivo.

© 2014 American Society of Plant Biologists. All rights reserved.

References

  1. PLoS One. 2014 Feb 13;9(2):e88218 - PubMed
  2. J Microsc. 2004 May;214(Pt 2):190-200 - PubMed
  3. Nature. 2011 Oct 23;479(7374):552-5 - PubMed
  4. FEBS Lett. 2007 Oct 2;581(24):4697-703 - PubMed
  5. Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12492-7 - PubMed
  6. Plant Physiol. 2007 Nov;145(3):593-600 - PubMed
  7. J Biol Chem. 2010 Dec 10;285(50):39140-9 - PubMed
  8. J Neurosci. 2004 Apr 21;24(16):4070-81 - PubMed
  9. PLoS One. 2012;7(1):e30817 - PubMed
  10. Biochim Biophys Acta. 2013 Mar;1828(3):1102-11 - PubMed
  11. Mol Plant Microbe Interact. 2009 Jul;22(7):868-81 - PubMed
  12. Plant Cell. 2011 Jul;23(7):2774-87 - PubMed
  13. EMBO Rep. 2003 Dec;4(12):1117-21 - PubMed
  14. PLoS Pathog. 2013;9(4):e1003290 - PubMed
  15. Mol Plant Microbe Interact. 2008 Apr;21(4):375-82 - PubMed
  16. Annu Rev Biophys Biomol Struct. 2005;34:351-78 - PubMed
  17. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12805-10 - PubMed
  18. Plant J. 1998 Dec;16(6):735-43 - PubMed
  19. Plant Cell. 2004 Dec;16(12):3216-29 - PubMed
  20. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2343-8 - PubMed
  21. Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22050-4 - PubMed
  22. Yeast. 2010 Aug;27(8):473-8 - PubMed
  23. Front Plant Sci. 2012 May 07;3:86 - PubMed
  24. Nat Cell Biol. 2012 Apr 29;14(6):640-8 - PubMed
  25. Plant Biol (Stuttg). 2010 Sep;12 Suppl 1:99-104 - PubMed
  26. Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):478-83 - PubMed
  27. Plant Cell Physiol. 2009 Feb;50(2):341-59 - PubMed
  28. Plant Cell. 2006 Apr;18(4):935-54 - PubMed
  29. Proc Natl Acad Sci U S A. 2013 May 14;110(20):8296-301 - PubMed
  30. EMBO J. 1998 Dec 1;17(23):6903-11 - PubMed
  31. Plant Methods. 2006 Nov 06;2:19 - PubMed
  32. Genome Res. 2003 Nov;13(11):2498-504 - PubMed
  33. Annu Rev Cell Dev Biol. 2012;28:215-50 - PubMed
  34. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3135-40 - PubMed
  35. Curr Opin Plant Biol. 2009 Dec;12(6):705-13 - PubMed
  36. Biochemistry. 2010 Aug 3;49(30):6305-16 - PubMed
  37. Mol Plant Microbe Interact. 2011 Jan;24(1):7-12 - PubMed
  38. Annu Rev Plant Biol. 2013;64:501-29 - PubMed
  39. Mol Cell Proteomics. 2009 Apr;8(4):612-23 - PubMed
  40. Plant Cell. 2009 May;21(5):1541-55 - PubMed
  41. J Cell Sci. 1992 Nov;103 ( Pt 3):857-62 - PubMed
  42. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8577-82 - PubMed
  43. Plant Physiol. 2007 Oct;145(2):339-50 - PubMed
  44. Nature. 2011 May 19;473(7347):380-3 - PubMed
  45. Science. 2010 Jan 1;327(5961):46-50 - PubMed
  46. Plant Cell. 2011 Apr;23(4):1191-3 - PubMed
  47. New Phytol. 2013 Jul;199(1):74-88 - PubMed
  48. Plant Cell. 2012 May;24(5):2105-22 - PubMed
  49. J Biol Chem. 2012 Nov 16;287(47):39982-91 - PubMed
  50. Plant J. 2012 Feb;69(4):713-9 - PubMed
  51. Front Plant Sci. 2012 Aug 03;3:181 - PubMed
  52. Plant Physiol. 2005 Sep;139(1):5-17 - PubMed

Publication Types