Display options
Share it on

Front Pharmacol. 2014 Apr 01;5:54. doi: 10.3389/fphar.2014.00054. eCollection 2014.

Serotonin mediation of early memory formation via 5-HT2B receptor-induced glycogenolysis in the day-old chick.

Frontiers in pharmacology

Marie E Gibbs, Leif Hertz

Affiliations

  1. Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville, VIC, Australia.
  2. Department of Clinical Pharmacology, China Medical University Shenyang, China.

PMID: 24744730 PMCID: PMC3978258 DOI: 10.3389/fphar.2014.00054

Abstract

Investigation of the effects of serotonin on memory formation in the chick revealed an action on at least two 5-HT receptors. Serotonin injected intracerebrally produced a biphasic effect on memory consolidation with enhancement at low doses and inhibition at higher doses. The non-selective 5-HT receptor antagonist methiothepin and the selective 5-HT2B/C receptor antagonist SB221284 both inhibited memory, suggesting actions of serotonin on at least two different receptor subtypes. The 5-HT2B/C and astrocyte-specific 5-HT receptor agonist, fluoxetine and paroxetine, enhanced memory and the effect was attributed to glycogenolysis. Inhibition of glycogenolysis with a low dose of DAB (1,4-dideoxy-1,4-imino-D-arabinitol) prevented both serotonin and fluoxetine from enhancing memory during short-term memory but not during intermediate memory. The role of serotonin on the 5-HT2B/C receptor appears to involve glycogen breakdown in astrocytes during short-term memory, whereas other published evidence attributes the second period of glycogenolysis to noradrenaline.

Keywords: astrocytes; day-old chick; glycogenolysis; memory formation; serotonin

References

  1. J Neurosci Res. 2007 Nov 15;85(15):3326-33 - PubMed
  2. Glia. 2006 Aug 15;54(3):214-22 - PubMed
  3. J Neurosci. 2008 Jan 2;28(1):264-78 - PubMed
  4. Neurosci Lett. 1979 Aug;13(3):279-83 - PubMed
  5. Neuroscience. 2000;95(3):913-22 - PubMed
  6. Br J Pharmacol. 2010 Feb;159(4):879-87 - PubMed
  7. Neurogastroenterol Motil. 1997 Dec;9(4):231-7 - PubMed
  8. Neurochem Res. 2012 Nov;37(11):2456-63 - PubMed
  9. Mol Psychiatry. 2012 Feb;17(2):154-63 - PubMed
  10. Brain Res Bull. 1995;38(2):153-9 - PubMed
  11. Neurosci Biobehav Rev. 2008 Jul;32(5):927-44 - PubMed
  12. Neurochem Res. 2012 Nov;37(11):2480-95 - PubMed
  13. Neurochem Res. 2014 Apr;39(4):661-7 - PubMed
  14. J Cereb Blood Flow Metab. 2013 Apr;33(4):550-6 - PubMed
  15. Eur J Pharmacol. 2003 Mar 19;464(2-3):135-40 - PubMed
  16. ASN Neuro. 2012 Apr 05;4(3): - PubMed
  17. Front Integr Neurosci. 2012 Dec 18;6:116 - PubMed
  18. Prog Neurobiol. 2002 Aug;67(5):345-91 - PubMed
  19. Biochem J. 1975 Apr;148(1):97-106 - PubMed
  20. Neurosci Biobehav Rev. 1987 Fall;11(3):331-9 - PubMed
  21. Diabete Metab. 1988 May-Jun;14(3):237-46 - PubMed
  22. Br J Pharmacol. 2006 Aug;148(7):1012-21 - PubMed
  23. Cell. 2011 Mar 4;144(5):644-5 - PubMed
  24. Neuropsychopharmacology. 2000 Feb;22(2):168-90 - PubMed
  25. Mol Pharmacol. 1993 Mar;43(3):320-7 - PubMed
  26. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87(8):486-508 - PubMed
  27. Cell. 2011 Mar 4;144(5):810-23 - PubMed
  28. Brain Res. 2003 Dec 24;994(2):226-33 - PubMed
  29. Brain Res Brain Res Rev. 2003 Mar;41(2-3):268-87 - PubMed
  30. Neuropsychopharmacology. 2008 Sep;33(10):2384-97 - PubMed
  31. J Neurochem. 1988 Dec;51(6):1852-7 - PubMed
  32. Adv Exp Med Biol. 1995;363:77-95 - PubMed
  33. Psychopharmacology (Berl). 2008 Dec;201(3):443-58 - PubMed
  34. J Neurosci Res. 2000 Jul 1;61(1):75-81 - PubMed
  35. Neurobiol Learn Mem. 1997 Nov;68(3):285-316 - PubMed
  36. J Cereb Blood Flow Metab. 2006 Oct;26(10):1285-97 - PubMed
  37. Neuroscience. 2006 Aug 11;141(1):9-13 - PubMed
  38. Neurosci Biobehav Rev. 1997 Sep;21(5):679-98 - PubMed
  39. Neuroscience. 2010 Jan 20;165(2):561-8 - PubMed
  40. J Neurochem. 2009 May;109 Suppl 1:10-6 - PubMed
  41. Neurochem Res. 2002 Feb;27(1-2):113-20 - PubMed
  42. Br J Pharmacol. 2000 Jun;130(3):692-8 - PubMed
  43. J Cereb Blood Flow Metab. 2007 Feb;27(2):219-49 - PubMed
  44. J Neurochem. 1982 May;38(5):1286-95 - PubMed
  45. Neural Plast. 1998 Jul-Sep;6(3):53-61 - PubMed
  46. J Neurosci. 2007 Nov 7;27(45):12255-66 - PubMed
  47. Curr Drug Targets CNS Neurol Disord. 2004 Feb;3(1):53-8 - PubMed
  48. Front Integr Neurosci. 2013 Apr 03;7:20 - PubMed
  49. J Neurochem. 2011 Jun;117(5):915-26 - PubMed
  50. Neurochem Int. 2010 Nov;57(4):432-9 - PubMed
  51. Nature. 1982 Jul 22;298(5872):373-5 - PubMed
  52. Naunyn Schmiedebergs Arch Pharmacol. 2005 Jan;371(1):89-98 - PubMed
  53. Biochem Soc Trans. 1994 May;22(2):160S - PubMed
  54. Behav Brain Res. 1984 Apr;12(1):21-7 - PubMed
  55. Naunyn Schmiedebergs Arch Pharmacol. 1986 Jun;333(2):98-103 - PubMed
  56. Brain Res Dev Brain Res. 1994 Mar 18;78(1):137-41 - PubMed
  57. J Med Chem. 1998 May 7;41(10):1598-612 - PubMed
  58. Neuron Glia Biol. 2010 May;6(2):113-25 - PubMed
  59. PLoS One. 2011;6(12):e28427 - PubMed
  60. Brain Res Bull. 2008 Jun 15;76(3):198-207 - PubMed
  61. Curr Top Med Chem. 2010;10(5):554-78 - PubMed
  62. Br J Pharmacol. 2000 Nov;131(5):927-32 - PubMed
  63. Brain Res Bull. 2008 Jun 15;76(3):224-34 - PubMed
  64. Magn Reson Imaging. 2011 Dec;29(10):1319-29 - PubMed
  65. J Neurosci Res. 2005 Jul 15;81(2):293-300 - PubMed
  66. J Biochem. 1972 Feb;71(2):321-31 - PubMed

Publication Types