Display options
Share it on

Physiol Rep. 2013 Dec 15;1(7):e00184. doi: 10.1002/phy2.184. eCollection 2013 Dec 01.

Progressive right ventricular functional and structural changes in a mouse model of pulmonary arterial hypertension.

Physiological reports

Zhijie Wang, David A Schreier, Timothy A Hacker, Naomi C Chesler

Affiliations

  1. Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, 53706, Wisconsin.
  2. Department of Medicine, University of Wisconsin, Madison, 53706, Wisconsin.
  3. Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, 53706, Wisconsin ; Department of Medicine, University of Wisconsin, Madison, 53706, Wisconsin.

PMID: 24744862 PMCID: PMC3970737 DOI: 10.1002/phy2.184

Abstract

Right ventricle (RV) dysfunction occurs with progression of pulmonary arterial hypertension (PAH) due to persistently elevated ventricular afterload. A critical knowledge gap is the molecular mechanisms that govern the transition from RV adaptation to RV maladaptation, which leads to failure. Here, we hypothesize that the recently established mouse model of PAH, via hypoxia and SU5416 treatment (HySu), captures that transition from adaptive to maladaptive RV remodeling including impairments in RV function and decreases in the efficiency of RV interactions with the pulmonary vasculature. To test this hypothesis, we exposed C57BL6 male mice to 0 (control), 14, 21, and 28 days of HySu and then obtained synchronized RV pressure and volume measurements in vivo. With increasing HySu exposure duration, arterial afterload increased monotonically, leading to a continuous increase in RV stroke work, RV fibrosis, and RV wall stiffening (P < 0.05). RV contractility increased at 14 days of HySu exposure and then plateaued (P < 0.05). As a result, ventricular-vascular coupling efficiency tended to increase at 14 days and then decrease. Our results suggest that RV remodeling may begin to shift from adaptive to maladaptive with increasing duration of HySu exposure, which would mimic changes in RV function with PAH progression found clinically. However, for the duration of HySu exposure used here, no drop in cardiac output was found. We conclude that the establishment of a mouse model for overt RV failure due to PAH remains an important task.

Keywords: RV dysfunction; RV overload; SUGEN; ventricular–vascular coupling

References

  1. Pulm Circ. 2012 Oct;2(4):434-42 - PubMed
  2. Am J Cardiol. 2007 Aug 15;100(4):731-5 - PubMed
  3. Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1823-31 - PubMed
  4. AJR Am J Roentgenol. 2011 Jan;196(1):87-94 - PubMed
  5. J Appl Physiol (1985). 2009 Dec;107(6):1693-703 - PubMed
  6. Cardiovasc Res. 2006 Feb 15;69(3):657-65 - PubMed
  7. Pulm Circ. 2011 Apr-Jun;1(2):212-23 - PubMed
  8. Biomech Model Mechanobiol. 2012 Jan;11(1-2):279-89 - PubMed
  9. Circulation. 2009 Apr 28;119(16):2250-94 - PubMed
  10. J Am Coll Cardiol. 1989 Jun;13(7):1637-52 - PubMed
  11. Eur Respir Rev. 2011 Dec;20(122):222-35 - PubMed
  12. Circulation. 2010 Jul 13;122(2):156-63 - PubMed
  13. Front Physiol. 2013 Dec 11;4:355 - PubMed
  14. Am J Physiol Heart Circ Physiol. 2003 Jan;284(1):H122-32 - PubMed
  15. Chest. 2009 Mar;135(3):794-804 - PubMed
  16. Circulation. 2010 Jun 29;121(25):2747-54 - PubMed
  17. Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1742-9 - PubMed
  18. Circulation. 2011 Jul 12;124(2):164-74 - PubMed
  19. Circulation. 2013 Oct 29;128(18):2016-25, 1-10 - PubMed
  20. Angiology. 1991 Oct;42(10):836-42 - PubMed
  21. Biomech Model Mechanobiol. 2013 Nov;12(6):1115-25 - PubMed
  22. Hypertension. 2012 Sep;60(3):677-83 - PubMed
  23. Heart. 2012 Feb;98(3):238-43 - PubMed
  24. Circulation. 2004 Oct 5;110(14):2010-6 - PubMed
  25. Circulation. 2009 Nov 17;120(20):1951-60 - PubMed
  26. Am J Physiol Lung Cell Mol Physiol. 2012 May 15;302(10):L977-91 - PubMed
  27. Ann Intern Med. 1991 Sep 1;115(5):343-9 - PubMed
  28. Circulation. 2006 Oct 24;114(17):1883-91 - PubMed
  29. FASEB J. 2012 Aug;26(8):3550-62 - PubMed
  30. Am J Respir Crit Care Med. 2011 Nov 15;184(10):1171-82 - PubMed
  31. J Mol Med (Berl). 2013 Nov;91(11):1315-27 - PubMed
  32. Eur Heart J. 2007 May;28(10):1250-7 - PubMed
  33. FASEB J. 2001 Feb;15(2):427-38 - PubMed
  34. Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H2069-75 - PubMed
  35. Am J Cardiol. 2005 Jan 15;95(2):199-203 - PubMed
  36. Nat Protoc. 2008;3(9):1422-34 - PubMed
  37. Circ Res. 1988 Apr;62(4):757-65 - PubMed
  38. Eur Respir J. 2012 Dec;40(6):1555-65 - PubMed
  39. J Am Coll Cardiol. 2011 Dec 6;58(24):2511-9 - PubMed

Publication Types

Grant support