Display options
Share it on

Ecol Evol. 2014 Apr;4(7):899-910. doi: 10.1002/ece3.966. Epub 2014 Feb 23.

Human-aided admixture may fuel ecosystem transformation during biological invasions: theoretical and experimental evidence.

Ecology and evolution

Jane Molofsky, Stephen R Keller, Sébastien Lavergne, Matthew A Kaproth, Maarten B Eppinga

Affiliations

  1. Department of Plant Biology, University of Vermont Burlington, Vermont, 05405.
  2. Appalachian Laboratory, University of Maryland Center for Environmental Science Frostburg, Maryland, 21532.
  3. Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS - Université Joseph Fourier BP 53 Grenoble Cedex 9, 38041, France.
  4. Department of Plant Biology, University of Vermont Burlington, Vermont, 05405 ; Department of Ecology, Evolution & Behavior, University of Minnesota Saint Paul, Minnesota, 55108.
  5. Department of Environmental Science, Copernicus Institute of Sustainable Development, Utrecht University Utrecht, TC 3508, The Netherlands.

PMID: 24772269 PMCID: PMC3997308 DOI: 10.1002/ece3.966

Abstract

Biological invasions can transform our understanding of how the interplay of historical isolation and contemporary (human-aided) dispersal affects the structure of intraspecific diversity in functional traits, and in turn, how changes in functional traits affect other scales of biological organization such as communities and ecosystems. Because biological invasions frequently involve the admixture of previously isolated lineages as a result of human-aided dispersal, studies of invasive populations can reveal how admixture results in novel genotypes and shifts in functional trait variation within populations. Further, because invasive species can be ecosystem engineers within invaded ecosystems, admixture-induced shifts in the functional traits of invaders can affect the composition of native biodiversity and alter the flow of resources through the system. Thus, invasions represent promising yet under-investigated examples of how the effects of short-term evolutionary changes can cascade across biological scales of diversity. Here, we propose a conceptual framework that admixture between divergent source populations during biological invasions can reorganize the genetic variation underlying key functional traits, leading to shifts in the mean and variance of functional traits within invasive populations. Changes in the mean or variance of key traits can initiate new ecological feedback mechanisms that result in a critical transition from a native ecosystem to a novel invasive ecosystem. We illustrate the application of this framework with reference to a well-studied plant model system in invasion biology and show how a combination of quantitative genetic experiments, functional trait studies, whole ecosystem field studies and modeling can be used to explore the dynamics predicted to trigger these critical transitions.

Keywords: Admixture; Phalaris arundinacea; critical transitions; dynamics; ecosystems; feedbacks; functional traits; invasive species; thresholds

References

  1. Science. 1987 Nov 6;238(4828):802-4 - PubMed
  2. Oecologia. 2005 Jun;144(1):1-11 - PubMed
  3. Am Nat. 2004 Aug;164(2):255-66 - PubMed
  4. Ecology. 2007 Nov;88(11):2758-65 - PubMed
  5. Conserv Biol. 2007 Dec;21(6):1612-25 - PubMed
  6. Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9212-7 - PubMed
  7. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3883-8 - PubMed
  8. Oecologia. 2010 Mar;162(3):781-90 - PubMed
  9. Oecologia. 2006 Nov;150(2):272-81 - PubMed
  10. New Phytol. 2008;177(3):706-714 - PubMed
  11. New Phytol. 2009 Aug;183(3):678-690 - PubMed
  12. Ecol Lett. 2007 Apr;10(4):253-63 - PubMed
  13. Am Nat. 1993 Jan;141(1):51-70 - PubMed
  14. Ecol Lett. 2011 Jul;14(7):690-701 - PubMed
  15. Oecologia. 2007 Jul;152(4):707-14 - PubMed
  16. Philos Trans R Soc Lond B Biol Sci. 2009 Jun 12;364(1523):1607-16 - PubMed
  17. Nature. 2004 Sep 9;431(7005):177-81 - PubMed
  18. Curr Biol. 2008 Mar 11;18(5):363-7 - PubMed
  19. Ecology. 2010 Nov;91(11):3398-406 - PubMed
  20. New Phytol. 2012 Dec;196(4):1240-1250 - PubMed
  21. Nat Rev Genet. 2006 Jul;7(7):510-23 - PubMed
  22. J Evol Biol. 2010 Aug;23(8):1720-31 - PubMed
  23. Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14397-404 - PubMed
  24. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7043-50 - PubMed
  25. Genetica. 2007 Feb;129(2):149-65 - PubMed
  26. Curr Opin Plant Biol. 2012 Apr;15(2):199-204 - PubMed
  27. Science. 2011 Jan 28;331(6016):426-9 - PubMed
  28. Mol Ecol. 2008 Jan;17(1):431-49 - PubMed
  29. Nature. 2001 Oct 11;413(6856):591-6 - PubMed
  30. Evolution. 1991 Aug;45(5):1065-1080 - PubMed
  31. Ann Bot. 2010 Jan;105(1):109-16 - PubMed
  32. Evolution. 2004 Aug;58(8):1705-29 - PubMed
  33. Theor Popul Biol. 2010 Mar;77(2):131-44 - PubMed
  34. New Phytol. 2011 Jul;191(1):19-36 - PubMed
  35. Trends Ecol Evol. 2006 Apr;21(4):178-85 - PubMed
  36. Heredity (Edinb). 1999 Oct;83 ( Pt 4):363-72 - PubMed
  37. Evol Appl. 2011 Nov;4(6):726-35 - PubMed

Publication Types

Grant support