Display options
Share it on

Front Cell Neurosci. 2014 Jun 02;8:152. doi: 10.3389/fncel.2014.00152. eCollection 2014.

Microglia change from a reactive to an age-like phenotype with the time in culture.

Frontiers in cellular neuroscience

Cláudia Caldeira, Ana F Oliveira, Carolina Cunha, Ana R Vaz, Ana S Falcão, Adelaide Fernandes, Dora Brites

Affiliations

  1. Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz - Cooperativa de Ensino Superior, CRL, Campus Universitário Monte de Caparica, Portugal.
  2. Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal.
  3. Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal.

PMID: 24917789 PMCID: PMC4040822 DOI: 10.3389/fncel.2014.00152

Abstract

Age-related neurodegenerative diseases have been associated with chronic neuroinflammation and microglia activation. However, cumulative evidence supports that inflammation only occurs at an early stage once microglia change the endogenous characteristics with aging and switch to irresponsive/senescent and dystrophic phenotypes with disease progression. Thus, it will be important to have the means to assess the role of reactive and aged microglia when studying advanced brain neurodegeneration processes and age-associated related disorders. Yet, most studies are done with microglia from neonates since there are no adequate means to isolate degenerating microglia for experimentation. Indeed, only a few studies report microglia isolation from aged animals, using either short-term cultures or high concentrations of mitogens in the medium, which trigger microglia reactivity. The purpose of this study was to develop an experimental process to naturally age microglia after isolation from neonatal mice and to characterize the cultured cells at 2 days in vitro (DIV), 10 DIV, and 16 DIV. We found that 2 DIV (young) microglia had predominant amoeboid morphology and markers of stressed/reactive phenotype. In contrast, 16 DIV (aged) microglia evidenced ramified morphology and increased matrix metalloproteinase (MMP)-2 activation, as well as reduced MMP-9, glutamate release and nuclear factor kappa-B activation, in parallel with decreased expression of Toll-like receptor (TLR)-2 and TLR-4, capacity to migrate and phagocytose. These findings together with the reduced expression of microRNA (miR)-124, and miR-155, decreased autophagy, enhanced senescence associated beta-galactosidase activity and elevated miR-146a expression, are suggestive that 16 DIV cells mainly correspond to irresponsive/senescent microglia. Data indicate that the model represent an opportunity to understand and control microglial aging, as well as to explore strategies to recover microglia surveillance function.

Keywords: autophagic capacity; in vitro cell aging; microRNAs; microglia; migration; phagocytosis; reactivity; senescence

References

  1. Pharmacol Ther. 2013 Sep;139(3):313-26 - PubMed
  2. Acta Neuropathol. 2009 Oct;118(4):475-85 - PubMed
  3. Front Cell Neurosci. 2013 Mar 13;7:22 - PubMed
  4. Neuroscience. 2009 Feb 6;158(3):1030-8 - PubMed
  5. J Cell Sci. 2012 Jan 1;125(Pt 1):7-17 - PubMed
  6. Aging Cell. 2012 Feb;11(1):29-40 - PubMed
  7. J Neuroinflammation. 2010 Jan 29;7:9 - PubMed
  8. Glia. 2007 Apr 15;55(6):604-16 - PubMed
  9. J Neuroimmunol. 2004 Aug;153(1-2):64-75 - PubMed
  10. Mol Neurobiol. 2013 Apr;47(2):632-44 - PubMed
  11. BMB Rep. 2009 Jun 30;42(6):324-30 - PubMed
  12. J Neurosci. 2007 Aug 1;27(31):8309-13 - PubMed
  13. Nature. 2001 Nov 8;414(6860):212-6 - PubMed
  14. Bioinformatics. 2013 Oct 15;29(20):2596-602 - PubMed
  15. Neuropathol Appl Neurobiol. 2013 Feb;39(1):19-34 - PubMed
  16. RNA Biol. 2011 Nov-Dec;8(6):1005-21 - PubMed
  17. Immunology. 2012 Jan;135(1):73-88 - PubMed
  18. Front Pharmacol. 2012 Jul 17;3:138 - PubMed
  19. Neurobiol Dis. 2010 Dec;40(3):663-75 - PubMed
  20. Nat Neurosci. 2007 Nov;10(11):1387-94 - PubMed
  21. Blood. 2011 Apr 21;117(16):4293-303 - PubMed
  22. Circ Res. 2010 Sep 3;107(5):677-84 - PubMed
  23. PLoS One. 2013;8(4):e60921 - PubMed
  24. Glia. 2009 Apr 15;57(6):604-21 - PubMed
  25. Nature. 2013 May 9;497(7448):211-6 - PubMed
  26. Glia. 1996 Dec;18(4):269-81 - PubMed
  27. Exp Cell Res. 2000 May 25;257(1):162-71 - PubMed
  28. Trends Neurosci. 1997 Jun;20(6):252-8 - PubMed
  29. Exp Gerontol. 2011 Jul;46(7):533-41 - PubMed
  30. Nat Med. 2011 Jan;17(1):64-70 - PubMed
  31. PLoS One. 2013 Nov 11;8(11):e79416 - PubMed
  32. J Neurosci Methods. 2011 Oct 30;202(1):65-9 - PubMed
  33. FASEB J. 2013 Mar;27(3):1176-90 - PubMed
  34. J Neuroinflammation. 2014 Apr 04;11:70 - PubMed
  35. Immun Ageing. 2013 Jun 20;10(1):24 - PubMed
  36. Dev Cell. 2004 Apr;6(4):463-77 - PubMed
  37. J Neuroinflammation. 2013 Feb 06;10:23 - PubMed
  38. Neuropharmacology. 2012 Jun;62(7):2398-408 - PubMed
  39. J Cell Physiol. 2012 Apr;227(4):1291-7 - PubMed
  40. Folia Neuropathol. 2012;50(1):74-84 - PubMed
  41. Neurosignals. 2008;16(1):75-84 - PubMed
  42. Mediators Inflamm. 2013;2013:413735 - PubMed
  43. Neurosci Bull. 2012 Apr;28(2):131-44 - PubMed
  44. J Neurosci Res. 2006 Jul;84(1):194-201 - PubMed
  45. Arch Immunol Ther Exp (Warsz). 2012 Aug;60(4):251-66 - PubMed
  46. Cancer Res. 2007 Apr 1;67(7):3117-26 - PubMed
  47. Glia. 2013 Jan;61(1):91-103 - PubMed
  48. Neuroscience. 2013 Jun 25;241:280-95 - PubMed
  49. PLoS One. 2010 May 20;5(5):e10724 - PubMed
  50. Nature. 2006 Jun 15;441(7095):880-4 - PubMed
  51. Ageing Res Rev. 2011 Jan;10(1):146-52 - PubMed
  52. Genes Dev. 2007 Dec 1;21(23):3061-6 - PubMed
  53. Mol Neurodegener. 2010 Mar 24;5:12 - PubMed
  54. Brain Behav Immun. 2013 Aug;32:70-85 - PubMed
  55. PLoS One. 2012;7(2):e31814 - PubMed
  56. Rejuvenation Res. 2005 Summer;8(2):82-5 - PubMed
  57. Cell Death Differ. 2011 Apr;18(4):571-80 - PubMed
  58. Mol Cell Neurosci. 2013 Mar;53:34-41 - PubMed
  59. Glia. 1998 Jan;22(1):72-85 - PubMed
  60. J Alzheimers Dis. 2011;25(2):279-93 - PubMed
  61. J Cell Biol. 1980 Jun;85(3):890-902 - PubMed
  62. CNS Neurol Disord Drug Targets. 2013 Sep;12(6):763-7 - PubMed
  63. Nat Protoc. 2006;1(4):1947-51 - PubMed
  64. Neuromolecular Med. 2012 Dec;14(4):285-302 - PubMed
  65. Neurobiol Aging. 2012 Jan;33(1):195.e1-12 - PubMed
  66. Physiol Rev. 2011 Apr;91(2):461-553 - PubMed
  67. Neurobiol Aging. 2005 May;26(5):665-72 - PubMed
  68. J Neurochem. 2007 Jun;101(5):1205-13 - PubMed
  69. Mol Aspects Med. 2006 Oct-Dec;27(5-6):403-10 - PubMed
  70. Magn Reson Imaging. 2009 Jan;27(1):142-5 - PubMed
  71. Autophagy. 2008 May;4(4):467-75 - PubMed
  72. Biochem J. 1996 Sep 1;318 ( Pt 2):603-8 - PubMed
  73. Magn Reson Imaging. 2008 Jun;26(5):667-75 - PubMed
  74. Front Genet. 2013 Jun 26;4:121 - PubMed
  75. Mediators Inflamm. 2013;2013:462934 - PubMed
  76. J Neuroinflammation. 2014 Jan 21;11:12 - PubMed
  77. Acta Neuropathol. 2010 Jan;119(1):89-105 - PubMed
  78. Free Radic Biol Med. 2009 Aug 15;47(4):410-8 - PubMed
  79. J Neuroinflammation. 2012 Dec 23;9:275 - PubMed
  80. Nature. 2004 Sep 16;431(7006):350-5 - PubMed
  81. Int J Biochem Mol Biol. 2012;3(4):365-73 - PubMed
  82. Front Pharmacol. 2012 Feb 10;3:14 - PubMed
  83. J Neurosci. 2011 Oct 26;31(43):15511-21 - PubMed
  84. J Neurosci Methods. 2010 Mar 30;187(2):243-53 - PubMed
  85. J Neurochem. 2008 May;105(3):584-94 - PubMed
  86. Curr Protoc Toxicol. 2010 Feb;Chapter 12:Unit 12.17 - PubMed
  87. Glia. 2009 Jun;57(8):875-83 - PubMed
  88. Biochem Pharmacol. 2014 Apr 15;88(4):594-604 - PubMed
  89. Neurobiol Aging. 2013 Oct;34(10):2310-21 - PubMed
  90. Aging Cell. 2014 Feb;13(1):60-9 - PubMed
  91. J Biol Chem. 2011 Feb 4;286(5):3693-706 - PubMed
  92. J Perinatol. 2009 Feb;29 Suppl 1:S8-13 - PubMed
  93. J Card Fail. 2007 Sep;13(7):530-40 - PubMed
  94. Neurosci Lett. 2011 Jul 20;499(2):109-13 - PubMed
  95. Neuron. 2013 Sep 4;79(5):873-86 - PubMed
  96. J Neuroinflammation. 2013 Jun 21;10:75 - PubMed
  97. J Neurochem. 2009 May;109 Suppl 1:117-25 - PubMed
  98. PLoS One. 2013 May 10;8(5):e63607 - PubMed
  99. EMBO J. 2000 Nov 1;19(21):5720-8 - PubMed
  100. Trends Neurosci. 2006 Feb;29(2):68-74 - PubMed
  101. J Oral Pathol Med. 2009 Jan;38(1):79-86 - PubMed
  102. Neurosci Res. 1999 Sep;34(4):207-15 - PubMed
  103. Glia. 2008 Aug 1;56(10):1048-60 - PubMed
  104. Nat Rev Neurosci. 2014 May;15(5):300-12 - PubMed
  105. Glia. 2003 Dec;44(3):183-9 - PubMed
  106. Neuroscience. 1999;92(4):1465-74 - PubMed
  107. Ageing Res Rev. 2013 Sep;12(4):1005-12 - PubMed
  108. Neuroimmunomodulation. 2012;19(2):131-6 - PubMed
  109. Front Cell Neurosci. 2014 Apr 01;8:101 - PubMed
  110. Neurobiol Dis. 2005 Nov;20(2):199-206 - PubMed
  111. Aging Cell. 2011 Apr;10(2):263-76 - PubMed
  112. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12481-6 - PubMed
  113. Science. 2005 May 27;308(5726):1314-8 - PubMed
  114. Arch Neurol. 2008 Jul;65(7):896-905 - PubMed
  115. Glia. 2004 Jan 15;45(2):208-12 - PubMed
  116. Brain Behav Immun. 2010 Jan;24(1):102-9 - PubMed
  117. Neurobiol Dis. 2014 Sep;69:43-53 - PubMed
  118. Neuroscience. 2013 Dec 19;254:185-95 - PubMed
  119. Age Ageing. 2008 May;37(3):318-23 - PubMed
  120. J Neurosci Res. 2010 Feb 15;88(3):552-62 - PubMed
  121. Acta Neuropathol. 2006 Jul;112(1):95-105 - PubMed

Publication Types