Display options
Share it on

AMB Express. 2014 May 01;4:21. doi: 10.1186/s13568-014-0021-3. eCollection 2014.

Response surface modeling for hot, humid air decontamination of materials contaminated with Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores.

AMB Express

Edward J Prokop, John R Crigler, Claire M Wells, Alice A Young, Tony L Buhr

Affiliations

  1. Naval Surface Warfare Center, Dahlgren Division, CBR Concepts and Experimentation Branch, 4045 Higley Road Suite 345, Dahlgren VA 22448-5162, USA.

PMID: 24949256 PMCID: PMC4052701 DOI: 10.1186/s13568-014-0021-3

Abstract

Response surface methodology using a face-centered cube design was used to describe and predict spore inactivation of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores after exposure of six spore-contaminated materials to hot, humid air. For each strain/material pair, an attempt was made to fit a first or second order model. All three independent predictor variables (temperature, relative humidity, and time) were significant in the models except that time was not significant for B. thuringiensis Al Hakam on nylon. Modeling was unsuccessful for wiring insulation and wet spores because there was complete spore inactivation in the majority of the experimental space. In cases where a predictive equation could be fit, response surface plots with time set to four days were generated. The survival of highly purified Bacillus spores can be predicted for most materials tested when given the settings for temperature, relative humidity, and time. These predictions were cross-checked with spore inactivation measurements.

Keywords: Bacillus; Decontamination; Hot humid air; RSM; Spore

References

  1. J Appl Microbiol. 2012 Nov;113(5):1037-51 - PubMed
  2. J Appl Microbiol. 2002;92(6):1105-15 - PubMed
  3. Am J Epidemiol. 1979 Jul;110(1):1-6 - PubMed
  4. Am J Dermatopathol. 1981 Summer;3(2):191-5 - PubMed
  5. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19334-9 - PubMed
  6. J Appl Bacteriol. 1991 Jul;71(1):9-18 - PubMed
  7. J Appl Microbiol. 2008 Nov;105(5):1604-13 - PubMed
  8. N Engl J Med. 2003 Dec 18;349(25):2416-22 - PubMed
  9. Appl Microbiol. 1954 Jan;2(1):33-6 - PubMed
  10. J AOAC Int. 2008 Jul-Aug;91(4):833-52 - PubMed
  11. Appl Microbiol. 1970 Feb;19(2):245-9 - PubMed
  12. J Emerg Med. 2003 May;24(4):463-7 - PubMed
  13. Appl Microbiol. 1970 Apr;19(4):565-72 - PubMed
  14. J Appl Microbiol. 2011 Nov;111(5):1057-64 - PubMed
  15. J Gen Microbiol. 1966 Jun;43(3):411-25 - PubMed
  16. J Bacteriol. 2007 Dec;189(23):8458-66 - PubMed
  17. Appl Environ Microbiol. 2010 Mar;76(6):1796-805 - PubMed

Publication Types