Display options
Share it on

AMB Express. 2014 Apr 25;4:36. doi: 10.1186/s13568-014-0036-9. eCollection 2014.

Family 1 carbohydrate binding-modules enhance saccharification rates.

AMB Express

Bruno Luan Mello, Igor Polikarpov

Affiliations

  1. Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo. Av. Trabalhador Sancarlense, São Carlos CEP 13560-970, SP, Brazil.

PMID: 24949270 PMCID: PMC4052752 DOI: 10.1186/s13568-014-0036-9

Abstract

Cellulose degrading enzymes usually have a two-domain structure consisting of a catalytic domain and a non-catalytic carbohydrate-binding module. Although it is well known the importance of those modules in cell wall degrading process, their function is not yet fully understood. Here, we analyze the cellulose-hydrolysis activity enhancement promoted by the cellobiohydrolase I carbohydrate-binding module from Trichoderma harzianum. It was cloned, expressed, purified and used in combination with either a commercial cellulase preparation, T. reesei cellobiohydrolase I or its separate catalytic domain to hydrolyze filter paper. In all cases the amount of glucose released was increased, reaching up to 30% gain when the carbohydrate-binding module was added to the reaction. We also show that this effect seems to be mediated by a decrease in the recalcitrance of the cellulosic substrate. This effect was observed both for crystalline cellulose samples which underwent incubation with the CBM prior to application of cellulases and for the ones incubated simultaneously. Our studies demonstrate that family 1 carbohydrate-binding modules are able to potentiate the enzymatic degradation of the polysaccharides and their application might contribute to diminishing the currently prohibitive costs of the lignocellulose saccharification process.

Keywords: Amorphogenesis; Carbohydrate binding-module; Cellulose binding-domain; Cellulosic ethanol; Enzymatic hydrolysis

References

  1. Langmuir. 2004 Feb 17;20(4):1409-13 - PubMed
  2. PLoS One. 2010 Oct 12;5(10):e12947 - PubMed
  3. Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15293-8 - PubMed
  4. Biotechnol Bioeng. 1993 Oct;42(8):1002-13 - PubMed
  5. Biochem J. 1998 May 1;331 ( Pt 3):775-81 - PubMed
  6. Proteins. 1992 Dec;14(4):475-82 - PubMed
  7. Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents - PubMed
  8. Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 - PubMed
  9. Mol Cell. 2000 May;5(5):865-76 - PubMed
  10. FEBS J. 2012 Dec;279(24):4453-65 - PubMed
  11. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Sep 1;66(Pt 9):1041-4 - PubMed
  12. Biochem J. 1999 Sep 1;342 ( Pt 2):473-80 - PubMed
  13. Eur J Biochem. 2002 Sep;269(17):4202-11 - PubMed
  14. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2001;33(1):13-18 - PubMed
  15. Biotechnol Prog. 1999 Oct 1;15(5):804-816 - PubMed
  16. J Microbiol Biotechnol. 2011 Aug;21(8):808-17 - PubMed
  17. Biotechnol Biofuels. 2013 Feb 26;6(1):30 - PubMed
  18. Eur J Biochem. 1988 Jan 4;170(3):575-81 - PubMed
  19. Curr Opin Plant Biol. 2008 Jun;11(3):308-13 - PubMed
  20. Biochem Biophys Res Commun. 2004 Apr 30;317(2):401-5 - PubMed
  21. Langmuir. 2012 Oct 9;28(40):14323-9 - PubMed
  22. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10342-7 - PubMed
  23. Bioresour Technol. 2011 Feb;102(3):2910-5 - PubMed
  24. Sci China C Life Sci. 2008 Jul;51(7):620-9 - PubMed
  25. Biotechnol Bioeng. 2008 Aug 15;100(6):1066-77 - PubMed

Publication Types