Display options
Share it on

Front Genet. 2014 Apr 22;5:84. doi: 10.3389/fgene.2014.00084. eCollection 2014.

Asymmetric localization of natural antisense RNA of neuropeptide sensorin in Aplysia sensory neurons during aging and activity.

Frontiers in genetics

Beena M Kadakkuzha, Xin-An Liu, Maria Narvaez, Alexandra Kaye, Komolitdin Akhmedov, Sathyanarayanan V Puthanveettil

Affiliations

  1. Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA.

PMID: 24795747 PMCID: PMC4001032 DOI: 10.3389/fgene.2014.00084

Abstract

Despite the advances in our understanding of transcriptome, regulation and function of its non-coding components continue to be poorly understood. Here we searched for natural antisense transcript for sensorin (NAT-SRN), a neuropeptide expressed in the presynaptic sensory neurons of gill-withdrawal reflex of the marine snail Aplysia californica. Sensorin (SRN) has a key role in learning and long-term memory storage in Aplysia. We have now identified NAT-SRN in the central nervous system (CNS) and have confirmed its expression by northern blotting and fluorescent RNA in situ hybridization. Quantitative analysis of NAT-SRN in micro-dissected cell bodies and processes of sensory neurons suggest that NAT-SRN is present in the distal neuronal processes along with sense transcripts. Importantly, aging is associated with reduction in levels of NAT-SRN in sensory neuron processes. Furthermore, we find that forskolin, an activator of CREB signaling, differentially alters the distribution of SRN and NAT-SRN. These studies reveal novel insights into physiological regulation of natural antisense RNAs.

Keywords: Aplysia; aging; antisense RNA; memory; neural circuitry; nocoding RNA

References

  1. Mol Autism. 2013 Sep 04;4(1):32 - PubMed
  2. J Neurosci. 2004 Nov 3;24(44):9933-43 - PubMed
  3. Hum Mol Genet. 2011 Sep 1;20(17):3467-77 - PubMed
  4. Science. 1991 May 10;252(5007):856-9 - PubMed
  5. J Neurosci. 1999 Aug 1;19(15):6338-47 - PubMed
  6. Nature. 2012 Nov 15;491(7424):454-7 - PubMed
  7. Nucleic Acids Res. 2007 Jan;35(Database issue):D156-61 - PubMed
  8. Science. 2009 Jun 19;324(5934):1536-40 - PubMed
  9. Plant Mol Biol. 2012 Jul;79(4-5):461-77 - PubMed
  10. J Vis Exp. 2014 Jan 13;(83):e51075 - PubMed
  11. Plant Cell. 2013 Oct;25(10):4166-82 - PubMed
  12. Mol Endocrinol. 1999 Jul;13(7):1071-83 - PubMed
  13. Science. 2005 Sep 2;309(5740):1564-6 - PubMed
  14. Eur J Neurosci. 2007 Nov;26(9):2444-57 - PubMed
  15. Sci Rep. 2013;3:1027 - PubMed
  16. BMC Biol. 2013 Apr 12;11:31 - PubMed
  17. Int J Mol Sci. 2013 Sep 12;14(9):18790-808 - PubMed
  18. Cereb Cortex. 2011 Mar;21(3):683-97 - PubMed
  19. Neuron. 2006 Feb 2;49(3):349-56 - PubMed
  20. Neurosci Res. 2008 Dec;62(4):236-9 - PubMed
  21. Biochem Biophys Res Commun. 2013 Sep 13;439(1):54-9 - PubMed
  22. Cell. 2008 Nov 28;135(5):960-73 - PubMed
  23. Nat Rev Mol Cell Biol. 2009 Sep;10(9):637-43 - PubMed
  24. Nat Biotechnol. 2012 Mar 25;30(5):453-9 - PubMed
  25. Essays Biochem. 2013;54:91-101 - PubMed
  26. Int J Alzheimers Dis. 2011;2011:929042 - PubMed
  27. J Neurosci. 2003 Oct 15;23(28):9409-17 - PubMed
  28. J Immunol. 2013 Jun 15;190(12):6570-8 - PubMed
  29. Cell. 2006 Dec 29;127(7):1453-67 - PubMed
  30. J Neurosci. 2002 Apr 1;22(7):2669-78 - PubMed
  31. Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7464-9 - PubMed
  32. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  33. BMC Genomics. 2013 Dec 14;14:880 - PubMed
  34. Nucleic Acids Res. 2012 Feb;40(4):1438-45 - PubMed
  35. Science. 2001 Nov 2;294(5544):1030-8 - PubMed
  36. Science. 1986 Dec 5;234(4781):1249-54 - PubMed
  37. J Neurosci. 2003 Mar 1;23(5):1804-15 - PubMed
  38. Nat Rev Genet. 2013 Dec;14(12):880-93 - PubMed

Publication Types

Grant support