Display options
Share it on

Am J Nucl Med Mol Imaging. 2014 Apr 25;4(3):260-9. eCollection 2014.

PET brain kinetics studies of (11)C-ITMM and (11)C-ITDM,radioprobes for metabotropic glutamate receptor type 1, in a nonhuman primate.

American journal of nuclear medicine and molecular imaging

Tomoteru Yamasaki, Jun Maeda, Masayuki Fujinaga, Yuji Nagai, Akiko Hatori, Joji Yui, Lin Xie, Nobuki Nengaki, Ming-Rong Zhang

Affiliations

  1. Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences Inage-ku, Chiba, Japan.
  2. Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences Inage-ku, Chiba, Japan.
  3. Shi Accelerator Service Co. Ltd Shinagawa-ku, Tokyo, Japan.

PMID: 24795840 PMCID: PMC3999406

Abstract

The metabotropic glutamate receptor type 1 (mGluR1) is a novel target protein for the development of new drugs against central nervous system disorders. Recently, we have developed (11)C-labeled PET probes (11)C-ITMM and (11)C-ITDM, which demonstrate similar profiles, for imaging of mGluR1. In the present study, we compared (11)C-ITMM and (11)C-ITDM PET imaging and quantitative analysis in the monkey brain. Respective PET images showed similar distribution of uptake in the cerebellum, thalamus, and cingulate cortex. Slightly higher uptake was detected with (11)C-ITDM than with (11)C-ITMM. For the kinetic analysis using the two-tissue compartment model (2-TCM), the distribution volume (VT) in the cerebellum, an mGluR1-rich region in the brain, was 2.5 mL∙cm(-3) for (11)C-ITMM and 3.6 mL∙cm(-3) for (11)C-ITDM. By contrast, the VT in the pons, a region with negligible mGluR1 expression, was similarly low for both radiopharmaceuticals. Based on these results, we performed noninvasive PET quantitative analysis with general reference tissue models using the time-activity curve of the pons as a reference region. We confirmed the relationship and differences between the reference tissue models and 2-TCM using correlational scatter plots and Bland-Altman plots analyses. Although the scattergrams of both radiopharmaceuticals showed over- or underestimations of reference tissue model-based the binding potentials against 2-TCM, there were no significant differences between the two kinetic analysis models. In conclusion, we first demonstrated the potentials of (11)C-ITMM and (11)C-ITDM for noninvasive PET quantitative analysis using reference tissue models. In addition, our findings suggest that (11)C-ITDM may be superior to (11)C-ITMM as a PET probe for imaging of mGluR1, because regional VT values in PET with (11)C-ITDM were higher than those of (11)C-ITMM. Clinical studies of (11)C-ITDM in humans will be necessary in the future.

Keywords: Central nervous system (CNS); metabotropic glutamate receptor type 1 (mGluR1); positron emission tomography (PET)

References

  1. Pharmacol Rev. 2008 Dec;60(4):536-81 - PubMed
  2. J Biol Chem. 1998 Mar 6;273(10):5615-24 - PubMed
  3. J Neurosci. 2010 Jan 6;30(1):316-24 - PubMed
  4. Prog Neurobiol. 1999 Sep;59(1):55-79 - PubMed
  5. Neuropharmacology. 2002 May;42(6):741-51 - PubMed
  6. J Med Chem. 2012 Dec 27;55(24):11042-51 - PubMed
  7. Biochem J. 2001 Nov 1;359(Pt 3):465-84 - PubMed
  8. Trends Pharmacol Sci. 2001 May;22(5):229-32 - PubMed
  9. Brain Res Bull. 2006 Apr 14;69(3):318-26 - PubMed
  10. Neuron. 1992 Apr;8(4):757-65 - PubMed
  11. Neuroimage. 2011 Jun 1;56(3):1105-10 - PubMed
  12. J Neurosci. 1993 May;13(5):2001-12 - PubMed
  13. Br J Pharmacol. 1997 Mar;120(6):1007-14 - PubMed
  14. Eur J Pharmacol. 2007 Jan 5;554(1):18-29 - PubMed
  15. Appl Radiat Isot. 2001 Aug;55(2):229-34 - PubMed
  16. Exp Neurol. 2009 Jul;218(1):75-82 - PubMed
  17. Brain Res. 2008 Jan 29;1191:168-79 - PubMed
  18. Mol Cell Neurosci. 2001 Jun;17(6):1071-83 - PubMed
  19. Ann Nucl Med. 2011 Jul;25(6):396-405 - PubMed
  20. J Neurochem. 2008 Jun;105(5):1625-34 - PubMed
  21. J Cereb Blood Flow Metab. 2003 Sep;23(9):1096-112 - PubMed
  22. Neurology. 2009 Aug 11;73(6):423-9 - PubMed
  23. J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40 - PubMed
  24. Bioorg Med Chem Lett. 2011 May 15;21(10):2998-3001 - PubMed
  25. Nucl Med Biol. 2003 Oct;30(7):779-84 - PubMed
  26. J Nucl Med. 2013 Aug;54(8):1302-7 - PubMed
  27. Neurosci Lett. 2003 May 15;342(1-2):21-4 - PubMed
  28. J Neurochem. 2012 Apr;121(1):115-24 - PubMed
  29. Nucl Med Biol. 2013 Feb;40(2):214-20 - PubMed
  30. Synapse. 2011 Feb;65(2):125-35 - PubMed
  31. Eur J Nucl Med Mol Imaging. 2012 Apr;39(4):632-41 - PubMed
  32. Neuroimage. 1996 Dec;4(3 Pt 1):153-8 - PubMed
  33. J Cell Physiol. 2002 May;191(2):125-37 - PubMed
  34. Eur J Pharmacol. 2001 Oct 5;428(2):203-14 - PubMed
  35. J Nucl Med. 1995 Oct;36(10):1836-9 - PubMed
  36. Eur J Neurosci. 2005 Dec;22(12):3241-54 - PubMed
  37. J Med Chem. 2012 Mar 8;55(5):2342-52 - PubMed

Publication Types