Display options
Share it on

Front Syst Neurosci. 2014 Apr 08;8:54. doi: 10.3389/fnsys.2014.00054. eCollection 2014.

Are videogame training gains specific or general?.

Frontiers in systems neuroscience

Adam C Oei, Michael D Patterson

Affiliations

  1. Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University Singapore, Singapore.

PMID: 24782722 PMCID: PMC3986546 DOI: 10.3389/fnsys.2014.00054

Abstract

Many recent studies using healthy adults document enhancements in perception and cognition from playing commercial action videogames (AVGs). Playing action games (e.g., Call of Duty, Medal of Honor) is associated with improved bottom-up lower-level information processing skills like visual-perceptual and attentional processes. One proposal states a general improvement in the ability to interpret and gather statistical information to predict future actions which then leads to better performance across different perceptual/attentional tasks. Another proposal claims all the tasks are separately trained in the AVGs because the AVGs and laboratory tasks contain similar demands. We review studies of action and non-AVGs to show support for the latter proposal. To explain transfer in AVGs, we argue that the perceptual and attention tasks share common demands with the trained videogames (e.g., multiple object tracking (MOT), rapid attentional switches, and peripheral vision). In non-AVGs, several studies also demonstrate specific, limited transfer. One instance of specific transfer is the specific enhancement to mental rotation after training in games with a spatial emphasis (e.g., Tetris). In contrast, the evidence for transfer is equivocal where the game and task do not share common demands (e.g., executive functioning). Thus, the "common demands" hypothesis of transfer not only characterizes transfer effects in AVGs, but also non-action games. Furthermore, such a theory provides specific predictions, which can help in the selection of games to train human cognition as well as in the design of videogames purposed for human cognitive and perceptual enhancement. Finally this hypothesis is consistent with the cognitive training literature where most post-training gains are for tasks similar to the training rather than general, non-specific improvements.

Keywords: cognition; learning; perception; transfer (psychology); video games

References

  1. Int J Psychophysiol. 2011 Jul;81(1):12-21 - PubMed
  2. Perspect Psychol Sci. 2013 Jul;8(4):445-54 - PubMed
  3. Trends Cogn Sci. 1997 Nov;1(8):291-6 - PubMed
  4. Vision Res. 1992 Jul;32(7):1349-57 - PubMed
  5. Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10081-6 - PubMed
  6. J Neurosci. 2011 Jan 19;31(3):992-8 - PubMed
  7. Psychol Sci. 2007 Aug;18(8):720-6 - PubMed
  8. J Am Acad Child Adolesc Psychiatry. 2005 Feb;44(2):177-86 - PubMed
  9. Arch Clin Neuropsychol. 2007 Jan;22(1):63-72 - PubMed
  10. Int J Psychophysiol. 2004 Apr;52(2):197-209 - PubMed
  11. Percept Mot Skills. 1996 Oct;83(2):643-7 - PubMed
  12. Psychol Aging. 1990 Mar;5(1):133-7 - PubMed
  13. Psychon Bull Rev. 2012 Feb;19(1):58-65 - PubMed
  14. Atten Percept Psychophys. 2010 Apr;72(3):667-71 - PubMed
  15. Atten Percept Psychophys. 2011 Nov;73(8):2399-412 - PubMed
  16. Comput Human Behav. 2012 May;28(3):984-994 - PubMed
  17. Psychol Sci. 2013 Dec;24(12):2409-19 - PubMed
  18. Psychol Aging. 1992 Jun;7(2):242-51 - PubMed
  19. Science. 2008 Jun 13;320(5882):1510-2 - PubMed
  20. Psychol Sci. 2007 Oct;18(10):850-5 - PubMed
  21. Atten Percept Psychophys. 2012 Feb;74(2):257-62 - PubMed
  22. Cogn Psychol. 2001 Nov;43(3):171-216 - PubMed
  23. Acta Psychol (Amst). 2012 May;140(1):13-24 - PubMed
  24. Child Dev. 1985 Dec;56(6):1479-98 - PubMed
  25. J Opt Soc Am A. 1988 Dec;5(12):2210-9 - PubMed
  26. Psychol Aging. 2008 Dec;23(4):765-77 - PubMed
  27. Annu Rev Neurosci. 2012;35:391-416 - PubMed
  28. Front Psychol. 2013 Dec 16;4:941 - PubMed
  29. Mem Cognit. 2005 Jun;33(4):611-23 - PubMed
  30. J Cogn Neurosci. 2012 Jun;24(6):1286-93 - PubMed
  31. J Exp Psychol Gen. 2001 Dec;130(4):641-57 - PubMed
  32. Ergonomics. 1970 Jan;13(1):101-17 - PubMed
  33. BMC Res Notes. 2009 Sep 01;2:174 - PubMed
  34. Perception. 1999;28(9):1059-74 - PubMed
  35. Dev Psychol. 2013 Feb;49(2):270-91 - PubMed
  36. Curr Biol. 2010 Sep 14;20(17):1573-9 - PubMed
  37. Am J Psychiatry. 1988 May;145(5):636-9 - PubMed
  38. Vision Res. 2010 Mar 5;50(5):548-56 - PubMed
  39. J Exp Psychol. 1980 Jun;109(2):160-74 - PubMed
  40. Atten Percept Psychophys. 2013 May;75(4):673-86 - PubMed
  41. Brain. 1996 Feb;119 ( Pt 1):89-100 - PubMed
  42. Atten Percept Psychophys. 2010 Aug;72(6):1455-70 - PubMed
  43. Top Cogn Sci. 2010 Apr;2(2):202-16 - PubMed
  44. Arch Surg. 2007 Feb;142(2):181-6; discusssion 186 - PubMed
  45. Acta Psychol (Amst). 2005 Jun;119(2):217-30 - PubMed
  46. Trends Cogn Sci. 2003 Mar;7(3):134-140 - PubMed
  47. Atten Percept Psychophys. 2013 May;75(4):667-72 - PubMed
  48. Cognition. 2006 Aug;101(1):217-45 - PubMed
  49. Neuroimage. 2004 Jun;22(2):530-40 - PubMed
  50. J Exp Psychol Gen. 2013 May;142(2):359-79 - PubMed
  51. Psychol Sci. 2007 Jan;18(1):88-94 - PubMed
  52. PLoS One. 2013;8(3):e58546 - PubMed
  53. J Exp Psychol Hum Percept Perform. 1994 Apr;20(2):357-71 - PubMed
  54. Front Psychol. 2011 Sep 13;2:226 - PubMed
  55. Ageing Res Rev. 2008 Jan;7(1):49-62 - PubMed
  56. J Exp Psychol Hum Percept Perform. 1992 Aug;18(3):849-60 - PubMed
  57. Vision Res. 2012 May 15;61:132-43 - PubMed
  58. J Exp Psychol Hum Percept Perform. 2006 Dec;32(6):1465-78 - PubMed
  59. Nat Neurosci. 2009 May;12(5):549-51 - PubMed
  60. PLoS One. 2011;6(8):e23175 - PubMed
  61. Nature. 2013 Sep 5;501(7465):97-101 - PubMed
  62. Nature. 2003 May 29;423(6939):534-7 - PubMed
  63. Acta Psychol (Amst). 2008 Nov;129(3):387-98 - PubMed
  64. Atten Percept Psychophys. 2012 May;74(4):641-7 - PubMed
  65. Front Psychol. 2010 Apr 21;1:8 - PubMed

Publication Types