Display options
Share it on

Front Neurol. 2014 Apr 15;5:53. doi: 10.3389/fneur.2014.00053. eCollection 2014.

Quantification of dexterity as the dynamical regulation of instabilities: comparisons across gender, age, and disease.

Frontiers in neurology

Emily L Lawrence, Isabella Fassola, Inge Werner, Caroline Leclercq, Francisco J Valero-Cuevas

Affiliations

  1. Brain Body Dynamics Laboratory, Department of Biomedical Engineering, University of Southern California , Los Angeles, CA , USA.
  2. Institut de la Main, Clinique Jouvenet , Paris , France.
  3. Institute of Sports Science, University of Innsbruck , Innsbruck , Austria.
  4. Brain Body Dynamics Laboratory, Department of Biomedical Engineering, University of Southern California , Los Angeles, CA , USA ; Institute of Sports Science, University of Innsbruck , Innsbruck , Austria ; Brain Body Dynamics Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California , Los Angeles, CA , USA.

PMID: 24782824 PMCID: PMC3995042 DOI: 10.3389/fneur.2014.00053

Abstract

Dexterous manipulation depends on using the fingertips to stabilize unstable objects. The Strength-Dexterity paradigm consists of asking subjects to compress a slender and compliant spring prone to buckling. The maximal level of compression [requiring low fingertip forces <300 grams force (gf)] quantifies the neural control capability to dynamically regulate fingertip force vectors and motions for a dynamic manipulation task. We found that finger dexterity is significantly affected by age (p = 0.017) and gender (p = 0.021) in 147 healthy individuals (66F, 81M, 20-88 years). We then measured finger dexterity in 42 hands of patients following treatment for osteoarthritis of the base of the thumb (CMC OA, 33F, 65.8 ± 9.7 years), and 31 hands from patients being treated for Parkinson's disease (PD, 6F, 10M, 67.68 ± 8.5 years). Importantly, we found no differences in finger compression force among patients or controls. However, we did find stronger age-related declines in performance in the patients with PD (slope -2.7 gf/year, p = 0.002) than in those with CMC OA (slope -1.4 gf/year, p = 0.015), than in controls (slope -0.86 gf/year). In addition, the temporal variability of forces during spring compression shows clearly different dynamics in the clinical populations compared to the controls (p < 0.001). Lastly, we compared dexterity across extremities. We found stronger age (p = 0.005) and gender (p = 0.002) effects of leg compression force in 188 healthy subjects who compressed a larger spring with the foot of an isolated leg (73F, 115M, 14-92 years). In 81 subjects who performed the tests with all four limbs separately, we found finger and leg compression force to be significantly correlated (females ρ = 0.529, p = 0.004; males ρ = 0.403, p = 0.003; 28F, 53M, 20-85 years), but surprisingly found no differences between dominant and non-dominant limbs. These results have important clinical implications, and suggest the existence - and compel the investigation - of systemic versus limb-specific mechanisms for dexterity.

Keywords: aging; dexterity; hand; leg; rehabilitation; sensorimotor function; sex differences; sociobiology

References

  1. Nat Neurosci. 2012 Jul 01;15(8):1117-9 - PubMed
  2. Exp Brain Res. 2011 Dec;215(3-4):359-67 - PubMed
  3. J Neurophysiol. 2013 Jul;110(2):418-30 - PubMed
  4. J Physiol. 2011 Dec 1;589(Pt 23):5613-24 - PubMed
  5. Phys Ther. 1992 May;72(5):373-7 - PubMed
  6. Annu Rev Neurosci. 2008;31:195-218 - PubMed
  7. J Gerontol A Biol Sci Med Sci. 2014 Sep;69(9):1139-45 - PubMed
  8. Arthritis Rheum. 2006 Apr 15;55(2):248-55 - PubMed
  9. Am J Occup Ther. 1989 Jul;43(7):444-7 - PubMed
  10. J Biomech. 2007;40(8):1653-61 - PubMed
  11. Neurosci Biobehav Rev. 2007;31(8):1125-35 - PubMed
  12. J Appl Physiol (1985). 2003 Jan;94(1):259-70 - PubMed
  13. Neuroimage. 2008 Apr 15;40(3):1044-55 - PubMed
  14. Nat Neurosci. 1999 Oct;2(10):859-61 - PubMed
  15. Neuroimage. 2008 Jan 15;39(2):825-31 - PubMed
  16. Exp Brain Res. 1999 May;126(1):1-18 - PubMed
  17. Exp Brain Res. 2002 Oct;146(3):369-78 - PubMed
  18. Lancet. 1999 Jan 9;353(9147):93-7 - PubMed
  19. Neuroimage. 1999 Jun;9(6 Pt 1):587-97 - PubMed
  20. J Neurophysiol. 2012 Dec;108(11):2896-911 - PubMed
  21. Front Psychol. 2012 Sep 21;3:340 - PubMed
  22. J Biomech. 2014 Jan 22;47(2):512-7 - PubMed
  23. J Hand Surg Am. 1986 May;11(3):324-32 - PubMed
  24. J Korean Med Sci. 2004 Dec;19(6):874-8 - PubMed
  25. Ann N Y Acad Sci. 2013 Mar;1279:114-26 - PubMed
  26. J Athl Train. 1999 Apr;34(2):86-92 - PubMed
  27. Cereb Cortex. 2010 Sep;20(9):2122-31 - PubMed
  28. Nat Neurosci. 1999 Oct;2(10):861-3 - PubMed
  29. Percept Mot Skills. 2005 Aug;101(1):317-34 - PubMed
  30. J Neurosci Methods. 2007 Jan 30;159(2):215-23 - PubMed
  31. J Neurosci. 2010 Jul 14;30(28):9431-44 - PubMed
  32. Nat Neurosci. 2008 Feb;11(2):224-31 - PubMed
  33. J Neurophysiol. 2001 Jun;85(6):2613-23 - PubMed
  34. Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):823-8 - PubMed
  35. Clin Orthop Relat Res. 1970 May-Jun;70:191-9 - PubMed
  36. Scand J Med Sci Sports. 2012 Aug;22(4):502-9 - PubMed
  37. J Neurosci. 2013 Sep 18;33(38):15050-5 - PubMed
  38. PLoS One. 2013;8(3):e58582 - PubMed
  39. J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):368-76 - PubMed
  40. Inj Prev. 2005 Apr;11(2):115-9 - PubMed
  41. J Biomech. 2013 Mar 15;46(5):998-1002 - PubMed
  42. Percept Mot Skills. 1993 Jun;76(3 Pt 2):1219-30 - PubMed
  43. J Hand Surg Br. 1994 Jun;19(3):340-1 - PubMed
  44. Eur J Pain. 2011 Sep;15(8):843.e1-14 - PubMed
  45. J Neurophysiol. 2003 Feb;89(2):1126-35 - PubMed
  46. Neuroepidemiology. 2010;34(3):184-92; discussion 192 - PubMed
  47. J Neurosci. 2011 Jul 27;31(30):10937-47 - PubMed
  48. J Athl Train. 1999 Oct;34(4):358-61 - PubMed
  49. J Gerontol. 1991 Mar;46(2):S71-83 - PubMed
  50. Dev Med Child Neurol. 2010 Oct;52(10):948-54 - PubMed
  51. Tohoku J Exp Med. 2008 Mar;214(3):257-67 - PubMed
  52. J Neurophysiol. 1998 Sep;80(3):1373-82 - PubMed
  53. Am J Occup Ther. 1992 Sep;46(9):785-92 - PubMed
  54. Biol Cybern. 1987;57(3):169-85 - PubMed
  55. Scand J Med Sci Sports. 2015 Feb;25(1):81-8 - PubMed
  56. J Appl Physiol (1985). 2004 Jun;96(6):2293-300 - PubMed
  57. J Physiol. 2011 Dec 1;589(Pt 23):5583-93 - PubMed
  58. Science. 1999 Mar 19;283(5409):1908-11 - PubMed
  59. Exp Physiol. 1993 May;78(3):263-301 - PubMed
  60. J Biomech. 2003 Feb;36(2):265-70 - PubMed
  61. J Neurophysiol. 2011 Mar;105(3):1295-305 - PubMed
  62. Nat Rev Neurosci. 2005 Sep;6(9):726-36 - PubMed
  63. J Neurophysiol. 2013 Oct;110(7):1583-92 - PubMed
  64. Arthritis Rheum. 2006 Apr 15;55(2):175-6 - PubMed
  65. Neuropsychopharmacology. 1993 Aug;9(1):1-12 - PubMed

Publication Types

Grant support