Display options
Share it on

Onco Targets Ther. 2014 May 23;7:789-98. doi: 10.2147/OTT.S59314. eCollection 2014.

Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma.

OncoTargets and therapy

Nicolas Graf, Zhoulei Li, Ken Herrmann, Daniel Weh, Michaela Aichler, Jolanta Slawska, Axel Walch, Christian Peschel, Markus Schwaiger, Andreas K Buck, Tobias Dechow, Ulrich Keller

Affiliations

  1. III Medical Department, Technische Universität München, Munich, Germany.
  2. Department of Nuclear Medicine, Technische Universität München, Munich, Germany.
  3. Department of Nuclear Medicine, Technische Universität München, Munich, Germany ; Department of Nuclear Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.
  4. Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany.

PMID: 24920919 PMCID: PMC4043809 DOI: 10.2147/OTT.S59314

Abstract

BACKGROUND: Dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibition offers an attractive therapeutic strategy in anaplastic large cell lymphoma depending on oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) signaling. We tested the efficacy of a novel dual PI3K/mTOR inhibitor, NVP-BGT226 (BGT226), in two anaplastic large cell lymphoma cell lines in vitro and in vivo and performed an early response evaluation with positron emission tomography (PET) imaging using the standard tracer, 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) and the thymidine analog, 3'-deoxy-3'-[(18)F] fluorothymidine (FLT).

METHODS: The biological effects of BGT226 were determined in vitro in the NPM-ALK positive cell lines SU-DHL-1 and Karpas299 by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, propidium iodide staining, and biochemical analysis of PI3K and mTOR downstream signaling. FDG-PET and FLT-PET were performed in immunodeficient mice bearing either SU-DHL-1 or Karpas299 xenografts at baseline and 7 days after initiation of treatment with BGT226. Lymphomas were removed for immunohistochemical analysis of proliferation and apoptosis to correlate PET findings with in vivo treatment effects.

RESULTS: SU-DHL-1 cells showed sensitivity to BGT226 in vitro, with cell cycle arrest in G0/G1 phase and an IC50 in the low nanomolar range, in contrast with Karpas299 cells, which were mainly resistant to BGT226. In vivo, both FDG-PET and FLT-PET discriminated sensitive from resistant lymphoma, as indicated by a significant reduction of tumor-to-background ratios on day 7 in treated SU-DHL-1 lymphoma-bearing animals compared with the control group, but not in animals with Karpas299 xenografts. Imaging results correlated with a marked decrease in the proliferation marker Ki67, and a slight increase in the apoptotic marker, cleaved caspase 3, as revealed by immunostaining of explanted lymphoma tissue.

CONCLUSION: Dual PI3K/mTOR inhibition using BGT226 is effective in ALK-positive anaplastic large cell lymphoma and can be monitored with both FDG-PET and FLT-PET early on in the course of therapy.

Keywords: inhibition; lymphoma; mammalian target of rapamycin; phosphatidylinositol-3-kinase; positron emission tomography

References

  1. Oncotarget. 2010 Nov;1(7):530-43 - PubMed
  2. Clin Cancer Res. 2011 Aug 15;17(16):5322-32 - PubMed
  3. J Clin Oncol. 2010 Apr 10;28(11):1896-903 - PubMed
  4. Cancer Res. 2003 May 15;63(10):2681-7 - PubMed
  5. Radiographics. 2005 Jan-Feb;25(1):191-207 - PubMed
  6. Blood. 2011 Jul 7;118(1):37-43 - PubMed
  7. Ann Oncol. 2012 Sep;23(9):2399-2408 - PubMed
  8. Cancer Res. 2012 Oct 1;72(19):5014-24 - PubMed
  9. Clin Cancer Res. 2007 Jun 15;13(12):3552-8 - PubMed
  10. Clin Cancer Res. 2012 Mar 1;18(5):1303-12 - PubMed
  11. Radiat Oncol. 2012 Mar 27;7:48 - PubMed
  12. Clin Cancer Res. 2011 Nov 15;17(22):7116-26 - PubMed
  13. PLoS One. 2010 Sep 24;5(9):e12965 - PubMed
  14. Mol Imaging Biol. 2008 Nov-Dec;10(6):349-55 - PubMed
  15. Anticancer Drugs. 2012 Jan;23(1):131-8 - PubMed
  16. J Clin Oncol. 2009 Jun 1;27(16):2697-704 - PubMed
  17. Cancer Res. 2006 Nov 15;66(22):11055-61 - PubMed
  18. Clin Cancer Res. 2010 Nov 15;16(22):5374-80 - PubMed
  19. J Nucl Med. 2009 Jul;50(7):1102-9 - PubMed
  20. Blood. 2012 Mar 1;119(9):2066-73 - PubMed
  21. Mol Cancer. 2013 May 24;12:46 - PubMed
  22. Am J Nucl Med Mol Imaging. 2012;2(1):110-21 - PubMed
  23. PLoS One. 2013;8(3):e58938 - PubMed
  24. Clin Cancer Res. 2013 Mar 1;19(5):1106-15 - PubMed
  25. Cell. 2007 Jun 29;129(7):1261-74 - PubMed
  26. Cancer Res. 2006 Jul 1;66(13):6589-97 - PubMed
  27. Oncogene. 2001 Jul 27;20(33):4466-75 - PubMed
  28. Science. 1994 Mar 4;263(5151):1281-4 - PubMed
  29. Cancer Res. 1999 Sep 15;59(18):4709-14 - PubMed
  30. Clin Cancer Res. 2011 Mar 1;17(5):1099-110 - PubMed
  31. Blood. 2000 Dec 15;96(13):4319-27 - PubMed
  32. Nat Med. 1998 Nov;4(11):1334-6 - PubMed
  33. J Clin Oncol. 2007 Feb 10;25(5):571-8 - PubMed
  34. Eur J Nucl Med Mol Imaging. 2013 Jan;40(1):34-43 - PubMed

Publication Types