Display options
Share it on

Transl Oncol. 2014 May 12; doi: 10.1016/j.tranon.2014.04.009. Epub 2014 May 12.

Rad6 is a Potential Early Marker of Melanoma Development.

Translational oncology

Karli Rosner, Shreelekha Adsule, Brittany Haynes, Evangelia Kirou, Ikuko Kato, Darius R Mehregan, Malathy P V Shekhar

Affiliations

  1. Department of Dermatology, Wayne State University, 110, East Warren Avenue, Detroit, MI 48201; Center for Molecular Medicine and Genetics, Wayne State University, 110, East Warren Avenue, Detroit, MI 48201; Karmanos Cancer Institute, Wayne State University, 110, East Warren Avenue, Detroit, MI 48201. Electronic address: [email protected].
  2. Department of Oncology, Wayne State University, 110, East Warren Avenue, Detroit, MI 48201.
  3. Karmanos Cancer Institute, Wayne State University, 110, East Warren Avenue, Detroit, MI 48201; Department of Oncology, Wayne State University, 110, East Warren Avenue, Detroit, MI 48201.
  4. Department of Dermatology, Wayne State University, 110, East Warren Avenue, Detroit, MI 48201.
  5. Karmanos Cancer Institute, Wayne State University, 110, East Warren Avenue, Detroit, MI 48201; Department of Oncology, Wayne State University, 110, East Warren Avenue, Detroit, MI 48201; Department of Pathology, Wayne State University, 110, East Warren Avenue, Detroit, MI 48201. Electronic address: [email protected].

PMID: 24831578 PMCID: PMC4145396 DOI: 10.1016/j.tranon.2014.04.009

Abstract

Melanoma is the leading cause of death from skin cancer in industrialized countries. Several melanoma-related biomarkers and signaling pathways have been identified; however, their relevance to melanoma development/progression or to clinical outcome remains to be established. Aberrant activation of Wnt/β-catenin pathway is implicated in various cancers including melanoma. We have previously demonstrated Rad6, an ubiquitin-conjugating enzyme, as an important mediator of β-catenin stability in breast cancer cells. Similar to breast cancer, β-catenin-activating mutations are rare in melanomas, and since β-catenin signaling is implicated in melanoma, we examined the relationship between β-catenin levels/activity and expression of β-catenin transcriptional targets Rad6 and microphthalmia-associated transcription factor-M (Mitf-M) in melanoma cell models, and expression of Rad6, β-catenin, and Melan-A in nevi and cutaneous melanoma tissue specimens. Our data show that Rad6 is only weakly expressed in normal human melanocytes but is overexpressed in melanoma lines. Unlike Mitf-M, Rad6 overexpression in melanoma lines is positively associated with high molecular weight β-catenin protein levels and β-catenin transcriptional activity. Double-immunofluorescence staining of Rad6 and Melan-A in melanoma tissue microarray showed that histological diagnosis of melanoma is significantly associated with Rad6/Melan-A dual positivity in the melanoma group compared to the nevi group (P=.0029). In contrast to strong β-catenin expression in normal and tumor areas of superficial spreading malignant melanoma (SSMM), Rad6 expression is undetectable in normal areas and Rad6 expression increases coincide with increased Melan-A in the transformed regions of SSMM. These data suggest a role for Rad6 in melanoma pathogenesis and that Rad6 expression status may serve as an early marker for melanoma development.

Copyright © 2014 Elsevier Inc. All rights reserved.

References

  1. Adv Genet. 1982;21:173-254 - PubMed
  2. Nature. 1987 Sep 10-16;329(6135):131-4 - PubMed
  3. Biochim Biophys Acta. 2003 Jun 5;1653(1):1-24 - PubMed
  4. Genomics. 1992 Mar;12(3):447-53 - PubMed
  5. Int J Cancer. 2001 Jun 15;92(6):839-42 - PubMed
  6. Am J Pathol. 1999 Feb;154(2):325-9 - PubMed
  7. Br J Cancer. 2003 Sep 15;89(6):1072-8 - PubMed
  8. Cancer Res. 2002 Apr 1;62(7):2115-24 - PubMed
  9. Genes Dev. 2000 Aug 1;14(15):1837-51 - PubMed
  10. Cancer Res. 2008 Mar 15;68(6):1741-50 - PubMed
  11. Science. 1998 Sep 4;281(5382):1509-12 - PubMed
  12. J Mol Signal. 2011 Jul 18;6:6 - PubMed
  13. Science. 1997 Mar 21;275(5307):1790-2 - PubMed
  14. J Mammary Gland Biol Neoplasia. 2004 Apr;9(2):119-31 - PubMed
  15. J Cell Biol. 2002 Sep 16;158(6):1079-87 - PubMed
  16. Cell. 2006 Nov 3;127(3):469-80 - PubMed
  17. Mol Cancer Ther. 2013 Apr;12(4):373-83 - PubMed
  18. Nat Rev Genet. 2004 Sep;5(9):691-701 - PubMed
  19. J Am Acad Dermatol. 2008 Jun;58(6):1013-20 - PubMed
  20. Front Biosci. 2006 Jan 01;11:733-42 - PubMed
  21. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5522-7 - PubMed
  22. Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1193-8 - PubMed
  23. Cell. 1993 Jul 30;74(2):395-404 - PubMed
  24. Biochim Biophys Acta. 2000 Apr 25;1491(1-3):205-19 - PubMed
  25. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2695-9 - PubMed
  26. Biochim Biophys Acta. 2000 Feb 2;1495(2):168-82 - PubMed
  27. Mol Cancer Res. 2006 Oct;4(10):729-45 - PubMed
  28. Biochim Biophys Acta. 2012 Oct;1823(10):1686-96 - PubMed
  29. Nature. 2005 Feb 17;433(7027):764-9 - PubMed
  30. Trends Mol Med. 2006 Sep;12(9):406-14 - PubMed
  31. Curr Biol. 1998 May 7;8(10):573-81 - PubMed
  32. Int J Cancer. 2008 Nov 15;123(10):2315-20 - PubMed
  33. Bioessays. 1994 Apr;16(4):253-8 - PubMed
  34. EMBO J. 1999 May 4;18(9):2401-10 - PubMed
  35. J Cell Biol. 2005 Aug 29;170(5):703-8 - PubMed
  36. Proc Natl Acad Sci U S A. 1985 Jan;82(1):168-72 - PubMed
  37. J Cell Biol. 2005 Jan 3;168(1):35-40 - PubMed
  38. Genes Dev. 2000 Jan 15;14(2):158-62 - PubMed
  39. Am J Pathol. 1999 Sep;155(3):731-8 - PubMed
  40. Nat Clin Pract Oncol. 2009 Feb;6(2):105-17 - PubMed
  41. Curr Biol. 1999 Feb 25;9(4):207-10 - PubMed
  42. Nat Genet. 1996 Sep;14(1):50-4 - PubMed
  43. J Skin Cancer. 2014;2014:439205 - PubMed
  44. Int J Cancer. 2003 Feb 20;103(5):652-6 - PubMed
  45. J Cutan Pathol. 2008 May;35(5):433-44 - PubMed

Publication Types

Grant support