Display options
Share it on

Indian J Pharm Sci. 2014 Jan;76(1):54-61.

Evaluation of nanodispersion of iron oxides using various polymers.

Indian journal of pharmaceutical sciences

Y Tanaka, H Ueyama, M Ogata, T Daikoku, M Morimoto, A Kitagawa, Y Imajo, T Tahara, M Inkyo, N Yamaguchi, S Nagata

Affiliations

  1. Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 7370112, Japan.
  2. Kotobuki Industries Co., Ltd., Ohashi-Gyoen-Bldg. 2F, 1-8-1 Shinjuku, Shinjuku-ku, Tokyo 1600022, Japan.
  3. Kishi Kasei Co., Ltd., 1-11-22 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 2360004, Japan.

PMID: 24799739 PMCID: PMC4007256

Abstract

In order to create Fe2O3 and Fe2O3·H2O nanoparticles, various polymers were used as dispersing agents, and the resulting effects on the dispersibility and nanoparticulation of the iron oxides were evaluated. It was revealed that not only the solution viscosity but also the molecular length of the polymers and the surface tension of the particles affected the dispersibility of Fe2O3 and Fe2O3·H2O particles. Using the dispersing agents 7.5% hydroxypropylcellulose-SSL, 6.0% Pharmacoat 603, 5.0% and 6.5% Pharmacoat 904 and 7.0% Metolose SM-4, Fe2O3 nanoparticles were successfully fabricated by wet milling using Ultra Apex Mill. Fe2O3·H2O nanoparticles could also be produced using 5.0% hydroxypropylcellulose-SSL and 4.0 and 7.0% Pharmacoat 904. The index for dispersibility developed in this study appears to be an effective indicator of success in fabricating nanoparticles of iron oxides by wet milling using Ultra Apex Mill.

Keywords: Dispersibility; iron oxide; nanoparticle; polymer; wet-milling

References

  1. Water Res. 2009 Aug;43(15):3717-26 - PubMed
  2. J Colloid Interface Sci. 2006 Nov 15;303(2):472-6 - PubMed
  3. J Chem Phys. 2012 Sep 7;137(9):094901 - PubMed
  4. J Colloid Interface Sci. 2003 Sep 15;265(2):283-95 - PubMed
  5. Chem Pharm Bull (Tokyo). 2003 Feb;51(2):171-4 - PubMed
  6. Toxicol Pathol. 2008 Jan;36(1):43-8 - PubMed
  7. Int J Pharm. 2011 Feb 28;405(1-2):218-27 - PubMed
  8. Colloids Surf B Biointerfaces. 2012 Jun 15;95:16-22 - PubMed
  9. Biol Pharm Bull. 2008 Feb;31(2):321-5 - PubMed
  10. Drug Dev Ind Pharm. 2012 Sep;38(9):1084-9 - PubMed
  11. J Hazard Mater. 2008 Jun 30;155(1-2):369-77 - PubMed
  12. Pharm Res. 2008 Jan;25(1):167-75 - PubMed
  13. Chem Pharm Bull (Tokyo). 2009 Oct;57(10):1050-7 - PubMed
  14. Eur J Pharm Sci. 2003 Feb;18(2):113-20 - PubMed
  15. J Phys Chem B. 2008 Feb 21;112(7):1976-86 - PubMed
  16. Drug Dev Ind Pharm. 2012 Aug;38(8):1015-23 - PubMed
  17. Int J Pharm. 2006 Jul 6;317(1):61-8 - PubMed
  18. Colloids Surf B Biointerfaces. 2010 Mar 1;76(1):236-40 - PubMed
  19. Chem Pharm Bull (Tokyo). 2008 Jun;56(6):878-80 - PubMed
  20. J Colloid Interface Sci. 2007 Sep 1;313(1):152-9 - PubMed
  21. Int J Pharm. 2005 Sep 30;302(1-2):113-24 - PubMed
  22. J Colloid Interface Sci. 2012 Dec 1;387(1):106-14 - PubMed
  23. Int J Pharm. 2008 Mar 20;352(1-2):309-16 - PubMed
  24. Nanotechnology. 2009 Feb 4;20(5):055604 - PubMed
  25. Drug Dev Ind Pharm. 2011 Aug;37(8):963-76 - PubMed

Publication Types