Display options
Share it on

Plant Cell. 2014 May;26(5):1992-2006. doi: 10.1105/tpc.114.125591. Epub 2014 May 23.

PHYTOCHROME INTERACTING FACTOR1 Enhances the E3 Ligase Activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to Synergistically Repress Photomorphogenesis in Arabidopsis.

The Plant cell

Xiaosa Xu, Inyup Paik, Ling Zhu, Qingyun Bu, Xi Huang, Xing Wang Deng, Enamul Huq

Affiliations

  1. Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712.
  2. Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520.
  3. Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712 [email protected].

PMID: 24858936 PMCID: PMC4079364 DOI: 10.1105/tpc.114.125591

Abstract

CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is a RING/WD40 repeat-containing ubiquitin E3 ligase that is conserved from plants to humans. COP1 forms complexes with SUPPRESSOR OF PHYTOCHROME A (SPA) proteins, and these complexes degrade positively acting transcription factors in the dark to repress photomorphogenesis. Phytochrome-interacting basic helix-loop-helix transcription factors (PIFs) also repress photomorphogenesis in the dark. In response to light, the phytochrome family of sensory photoreceptors simultaneously inactivates COP1-SPA complexes and induces the rapid degradation of PIFs to promote photomorphogenesis. However, the functional relationship between PIFs and COP1-SPA complexes is still unknown. Here, we present genetic evidence that the pif and cop1/spa Arabidopsis thaliana mutants synergistically promote photomorphogenesis in the dark. LONG HYPOCOTYL5 (HY5) is stabilized in the cop1 pif1, spa123 pif1, and pif double, triple, and quadruple mutants in the dark. Moreover, the hy5 mutant suppresses the constitutive photomorphogenic phenotypes of the pifq mutant in the dark. PIF1 forms complexes with COP1, HY5, and SPA1 and enhances the substrate recruitment and autoubiquitylation and transubiquitylation activities of COP1. These data uncover a novel function of PIFs as the potential cofactors of COP1 and provide a genetic and biochemical model of how PIFs and COP1-SPA complexes synergistically repress photomorphogenesis in the dark.

© 2014 American Society of Plant Biologists. All rights reserved.

References

  1. Plant Cell. 2014 Jan;26(1):56-78 - PubMed
  2. Cell. 1992 Nov 27;71(5):791-801 - PubMed
  3. Curr Opin Plant Biol. 2005 Oct;8(5):469-76 - PubMed
  4. Plant Cell. 2004 Sep;16(9):2293-306 - PubMed
  5. EMBO J. 2002 May 15;21(10):2441-50 - PubMed
  6. Plant Cell. 2009 Nov;21(11):3535-53 - PubMed
  7. Cell. 2010 Jun 25;141(7):1230-40 - PubMed
  8. J Biosci Bioeng. 2007 Jul;104(1):34-41 - PubMed
  9. Plant J. 2011 Feb;65(3):346-58 - PubMed
  10. J Biol Chem. 2003 Feb 14;278(7):5255-63 - PubMed
  11. J Biol Chem. 2003 May 30;278(22):19682-90 - PubMed
  12. Plant Cell. 2004 Jun;16(6):1433-45 - PubMed
  13. Genes Dev. 2012 Aug 15;26(16):1851-63 - PubMed
  14. Mol Cell. 2006 Aug 4;23(3):439-46 - PubMed
  15. Curr Opin Plant Biol. 2004 Dec;7(6):708-11 - PubMed
  16. Science. 2000 May 5;288(5467):859-63 - PubMed
  17. Curr Biol. 2008 Dec 9;18(23):1815-23 - PubMed
  18. Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6798-802 - PubMed
  19. Plant J. 1998 Oct;16(2):201-8 - PubMed
  20. Trends Plant Sci. 2005 Feb;10(2):51-4 - PubMed
  21. Plant Cell. 2008 Feb;20(2):337-52 - PubMed
  22. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1335-40 - PubMed
  23. Trends Plant Sci. 2007 Nov;12(11):514-521 - PubMed
  24. Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11626-31 - PubMed
  25. Plant Cell. 2010 Jul;22(7):2370-83 - PubMed
  26. Annu Rev Plant Biol. 2008;59:281-311 - PubMed
  27. Trends Plant Sci. 2011 Jan;16(1):19-28 - PubMed
  28. Semin Cell Dev Biol. 2000 Dec;11(6):457-66 - PubMed
  29. Genes Dev. 2003 Nov 1;17(21):2642-7 - PubMed
  30. Plant J. 2005 Dec;44(6):1023-35 - PubMed
  31. J Struct Funct Genomics. 2005;6(2-3):143-7 - PubMed
  32. Plant Cell. 2008 Jun;20(6):1586-602 - PubMed
  33. Proc Natl Acad Sci U S A. 2009 May 5;106(18):7660-5 - PubMed
  34. Plant Cell. 2010 Jan;22(1):108-23 - PubMed
  35. Plant Cell. 2013 May;25(5):1657-73 - PubMed
  36. Plant Cell. 2009 Feb;21(2):403-19 - PubMed
  37. J Biol Chem. 2011 Apr 8;286(14):12066-74 - PubMed
  38. Science. 1999 Apr 16;284(5413):496-9 - PubMed
  39. PLoS Genet. 2013;9(1):e1003244 - PubMed
  40. Nature. 2000 May 25;405(6785):462-6 - PubMed
  41. Plant Cell. 2005 Mar;17(3):804-21 - PubMed
  42. Plant J. 2012 Sep;71(5):699-711 - PubMed
  43. Plant Cell. 1994 Apr;6(4):487-500 - PubMed
  44. Plant Physiol. 2007 Nov;145(3):1043-51 - PubMed
  45. Genes Dev. 2004 Mar 15;18(6):617-22 - PubMed
  46. Plant J. 2013 Aug;75(4):631-41 - PubMed
  47. Science. 2004 Sep 24;305(5692):1937-41 - PubMed
  48. Genes Dev. 1997 Nov 15;11(22):2983-95 - PubMed
  49. Nat Rev Genet. 2007 Mar;8(3):217-30 - PubMed
  50. Plant Cell. 2008 Sep;20(9):2307-23 - PubMed
  51. J Exp Bot. 2010;61(1):11-24 - PubMed
  52. Genes Dev. 2005 Mar 1;19(5):593-602 - PubMed
  53. EMBO J. 2000 Sep 15;19(18):4997-5006 - PubMed
  54. PLoS One. 2012;7(11):e49428 - PubMed
  55. Plant Cell. 2004 Nov;16(11):3045-58 - PubMed
  56. Trends Cell Biol. 2011 Nov;21(11):664-71 - PubMed
  57. Trends Cell Biol. 2005 Nov;15(11):618-25 - PubMed
  58. Plant Cell. 2009 Feb;21(2):622-41 - PubMed
  59. Nature. 2004 May 6;429(6987):86-92 - PubMed
  60. Nature. 2003 Jun 26;423(6943):995-9 - PubMed
  61. Trends Plant Sci. 2012 Oct;17(10):584-93 - PubMed
  62. Curr Opin Plant Biol. 2009 Feb;12(1):49-56 - PubMed
  63. Cell. 2004 Jun 25;117(7):859-72 - PubMed
  64. Mol Cell. 1998 Jan;1(2):213-22 - PubMed

Publication Types

Grant support